速度势函数

参考自中国农业大学流体力学课程

速度势函数存在的前提

已知在无旋流动中,任意流体微团的角速度均为0,而在直角坐标系中三个方向的角速度分量如下:
直角坐标系中三个方向的角速度分量
无旋流动角速度为0,各分量也为0,所以
角速度分量为0
由数学分析可知,上述三个微分关系式正表明一个全微分的充要条件,即:
全微分关系式
而这个全微分的函数就是势函数,其中x、y、z、t均为该函数变量,x、y、z表示位置,t表示时间,从而可以推断出势函数存在的前提就是流动无旋。

简单来说,有了势函数,在直角坐标系中根据数学关系必定可以得到上述微分关系式,由此上述关系式便可以推得各个方向角速度分量均为0,故可以得到任意流体微团角速度为0,此时流动无旋的结论,从而论证势函数存在的前提就是流动无旋。

势函数与速度的关系

势函数的全微分也可以写成:
势函数全微分
与上方另一个全微分关系式相比较,则可得出速度势函数与速度的关系(注意速度势函数中,时间t为其的一个参变量):
速度势函数与速度的关系
由此可知,求出一个速度势函数,就可以得出整个速度场。

速度势函数的性质
  • 势函数的方向导数等于速度在该方向上的投影
    即给定一个方向,然后对势函数求其该方向的方向导数,便可以得到在该方向上的速度分量,这条性质实际上也是速度势函数与速度的关系从xyz三个方向到空间任意方向的一个拓展。
  • 存在势函数的流动一定是无旋流动
    可以通过该性质使角速度为0来求解问题。势函数存在与流动无旋互为充要条件,无旋即有势,有势即无旋。
  • 等势面与流线正交
    在任意瞬间时刻,速度势函数取值相同的点构成流动空间的一个连续曲面,叫做等势面,在这个面上,所有位置的势函数的值相等。
    任取等势面上一点A,并任取该点处一微元矢量dL和该点速度矢量v
    速度矢量v
    微元矢量dL
    参考图
    故可得出:
    点乘公式
    因为在等势面上,所以为0,得证v与dL的点乘为0,即两者正交。也就是说等势面上一点的速度矢量与等势面上经过该点的任意方向的矢量垂直,速度矢量与流线是平行的,故等势面与流线正交。
  • 对于不可压缩流体,势函数是调和函数
    不可压缩流连续方程为:
    不可压缩流连续方程
    对于有势流动:
    对于有势流动代入得拉普拉斯方程
    则任何不可压缩流体无旋运动的势函数必定满足拉普拉斯方程,满足拉普拉斯方程变为调和函数,其解具有可叠加性。
例题及做题方法

典型题目

  • 列出已知条件
    列出已知条件
  • 判断速度势函数是否存在,及流动是否无旋
    判断速度势函数是否存在,及流动是否无旋
  • 利用速度势函数与速度关系积分求出速度势函数
    利用速度势函数与速度关系积分求出速度势函数
    这种给定场中上方向速度求速度势函数的问题,一般先判断是否存在速度势函数,及判断是否无旋,然后便根据速度势函数与速度的关系,积分便可以求出速度势函数,注意常数对速度场没有影响,可以忽略。
  • 5
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值