深度学习实践:python实现relu、sigmoid、阶跃函数

元学习论文总结||小样本学习论文总结

2017-2019年计算机视觉顶会文章收录 AAAI2017-2019 CVPR2017-2019 ECCV2018 ICCV2017-2019 ICLR2017-2019 NIPS2017-2019


python实现relu、sigmoid、阶跃函数

# coding:utf-8
import numpy as np
import matplotlib.pyplot as plt


def relu(x):
    # relu函数
    return np.maximum(0, x)


def sigmoid(x):
    # sigmoid函数
    return 1 / (1 + np.exp(-x))


def step_function(x):
    # 阶跃函数
    return np.array(x > 0, dtype=np.int)  # 先计算bool值,再转成int


def show(x, y, ylim):
    # 画图
    plt.plot(x, y)
    plt.ylim(ylim)  # y轴范围
    plt.show()  # plot在内存画,show一次性将内存的显示出来


def show_relu(x):
    # 展示relu函数图像
    y = relu(x)
    ylim = (-1.0, 5.5)  # y轴的范围,比输入的大d
    show(x, y, ylim)


def show_sigmoid(x):
    # 展示sigmoid函数图像
    y = sigmoid(x)
    ylim = (-0.1, 1.1)
    show(x, y, ylim)


def show_step(x):
    # 展示阶跃函数图像
    y = step_function(x)
    ylim = (-0.1, 1.1)
    show(x, y, ylim)


def show_sig_step_compare(x):
    # 对比阶跃函数和sigmoid函数图像
    y_sig = sigmoid(x)
    y_step = step_function(x)
    plt.plot(x, y_sig)
    plt.plot(x, y_step, 'k--')
    plt.ylim(-0.1, 1.1)
    plt.show()


x = np.arange(-5.0, 5.0, 0.1)  # x范围

# show_relu(x)
# show_sigmoid(x)
# show_step(x)
show_sig_step_compare(x)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值