pytorch安装配置

1.下载网页:PyTorch

下拉到下面界面,cuda的版本查找可以参考CUDA学习(一)——如何查看自己CUDA版本?_cuda version-CSDN博客

我的版本号是12.7

然后把上面run this command输入到任务管理器:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

pip后的3可删可不删,崩溃装这么久。休息一天了,明天继续(慢的原因主要是在官网下如果有类似于镜像网站的话可能会快很多)

pip3 install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple

这种可能会更快,但我还是用原装了防止有问题。

晚上12点终于好了

### 如何在 CUDA 12.7安装 PyTorch 对于 CUDA 12.7 版本,官方支持的 PyTorch 安装命令可能尚未更新至该特定版本。然而,可以根据已有的信息推断出适合的操作方法。 为了确保兼容性和稳定性,在安装前应确认本地环境中 CUDA 的确切版本,并选择最接近且受支持的 PyTorch 构建版本。由于目前最新的稳定版 PyTorch 支持 CUDA 12.4[^1],建议采用此版本作为基础来尝试安装适用于更高 CUDA 版本(如 12.7)的 PyTorch。 #### 使用 Conda 安装 PyTorch 和相关依赖项 推荐通过 Anaconda 或 Miniconda 来管理 Python 环境以及安装 PyTorch 及其组件,因为这种方式能够更好地处理库之间的依赖关系并减少冲突的可能性: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia ``` 尽管上述命令指定的是 `pytorch-cuda=12.4`,但在某些情况下,Conda 渠道可能会自动适配更高级别的 CUDA 库以匹配系统的实际状况。因此,即使指定了较低版本的 CUDA,也有可能成功运行于更高的 CUDA 平台上。 如果遇到任何问题或者希望强制针对 CUDA 12.7 进行优化,则可以通过访问 [PyTorch官方网站](https://pytorch.org/get-started/locally/) 获取最新指导说明,并手动挑选合适的预编译包进行离线安装[^3]。 另外一种方式是利用 pip 工具配合清华源加速下载过程,这通常能提高国内用户的下载速度: ```bash pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu124/ ``` 需要注意的是,这里的 URL 参数 (`cu124`) 表示用于 CUDA 12.4 的构建;当面对 CUDA 12.7 时,应当寻找对应的标签或路径,不过截至当前时间点,官方文档中并未提供直接针对 CUDA 12.7 的选项[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值