RTX4060安装pytorch-gpu (Cuda12.2),[pytorch] torch.cuda.is_available() False,torch使用GPU运行,而不是CPU运行的操作指南

RTX4060安装pytorch-gpu (Cuda12.2)技术分享

问题描述:
在cmd中运行以下命令返回的是false

在这里插入图片描述
第一步:我的电脑显卡是4060Ti,我安装的cuda是12.2,那么我需要下载的cudnn的版本是8.9.3
在这里插入图片描述
下载的具体网址
在这里插入图片描述
然后下载的cudnn,将三个文件夹中的文件分别复制粘贴到cuda安装的对应的目录下
在这里插入图片描述
在这里插入图片描述cmd中查看是否安装成功

nvidia-smi

在这里插入图片描述

nvcc -V

在这里插入图片描述

确认一下是否安装成功
进入如下目录:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\extras\demo_suite

在这里插入图片描述

执行 bandwidthTest.exe,看见PASS
在这里插入图片描述

执行 deviceQuery.exe,看见PASS
在这里插入图片描述
操作就是先打开命令行cmd,然后将以上的两个.exe拖进cmd中,回车就能看到结果了

如果以上都没有问题,那就需要设置一下镜像
设置镜像
在C盘用户目录下,加入如下内容即可。

在这里插入图片描述

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple/
[install]
use-mirrors =true
mirrors =http://pypi.mirrors.ustc.edu.cn/simple/
trusted-host =pypi.mirrors.ustc.edu.cn

创建pytorch环境,我当前的是3.8.8,看第一幅图有版本。

在cmd中

conda create –n pytorch38 python=3.8
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

安装的过程有点慢,耐心等待即可。

完成安装时,在cmd中输入pip list时,查看安装的版本
在这里插入图片描述
安装的路径在下图:
在这里插入图片描述
以前安装的是torch的版本是cpu版本,我先剪切出去了,以防不成功
在这里插入图片描述
cmd中,进入python环境后,输入一下的测试命令,进行测试,结果:
在这里插入图片描述
conda 的基础命令

#查看现有环境
conda env list
#更新conda
conda upgrade --all
#使用py36环境
conda activate py36
#返回base环境
conda deactivate
#创建一个名字叫py36的环境,版本为3.6
conda create -n py36 python=3.6
#删除一个名字叫py36的环境
conda remove -n py36 --all

进行项目上的测试结果返回:
在这里插入图片描述
100Epochs只需要1分钟,我用cpu跑需要30分钟。差了30倍的速度

最新的执行的命名:

pip install torch==2.4.1+cu128 torchvision==0.19.1+cu128 torchaudio==2.1.1+cu128 --index-url https://download.pytorch.org/whl/cu128

安装命令:

pip install torch==2.4.1+cu124 torchvision==0.19.1+cu124 --index-url https://download.pytorch.org/whl/cu124

pip install torchaudio==2.4.0+cu124 --index-url https://download.pytorch.org/whl/cu124

<think>好的,我现在需要处理用户关于CUDA 12.2PyTorch版本兼容性的问题。首先,用户提到参考的引用内容中有提到CUDA 12.2可能不被PyTorch支持,比如引用[1]提到如果显示CUDA 12.2,应该安装12.1,因为PyTorch可能没有支持12.2的版本。而引用[3]中的表格显示DeepSeek 7b模型需要CUDA 12.2和cuDNN 8.9.2,这可能让用户产生疑惑,为什么有些模型需要CUDA 12.2,但PyTorch又不支持。 接下来,我需要验证PyTorch官方是否确实不支持CUDA 12.2。查阅PyTorch的官方安装页面(https://pytorch.org/get-started/locally/),发现目前列出的稳定版本主要支持CUDA 11.8和12.1。例如,PyTorch 2.0.x支持CUDA 11.7和11.8,而PyTorch 2.1.x支持CUDA 12.1。这说明官方尚未正式支持CUDA 12.2,这与引用[1]的信息一致。 然后,用户提到的引用[3]中的模型可能需要特定版本的CUDA,但这里的CUDA版本可能是模型开发者自己测试的环境,并不一定代表PyTorch官方支持。因此,可能存在用户需要自行编译PyTorch以适配CUDA 12.2的情况,但这对于一般用户来说比较复杂,容易出错。 接下来,用户需要CUDA 12.2PyTorch的兼容性对照表。根据我的了解,PyTorch官方并没有发布针对CUDA 12.2的预编译版本,所以没有官方的兼容性表。但用户可能需要知道如何解决这个问题,例如降级CUDA12.1,或者寻找非官方的PyTorch版本。 另外,引用[2]提到在Windows下安装CUDA和cuDNN的步骤,用户可能需要指导如何正确安装CUDA 12.1以及对应的PyTorch版本。需要强调安装时的版本匹配问题,避免出现兼容性错误。 最后,用户可能还关心如果必须使用CUDA 12.2的情况下的解决方案,比如等待官方支持或自行编译。但需要指出这些方法的潜在困难和风险。 总结回答的结构应该是:首先说明PyTorch官方尚未支持CUDA 12.2,建议使用CUDA 12.1,并提供对应的PyTorch安装命令。然后解释引用[3]中模型可能需要CUDA 12.2的原因,并给出建议的解决方案。最后附上相关问题,帮助用户进一步了解如何处理版本兼容性问题。</think>### CUDA 12.2PyTorch版本兼容性说明 根据现有资料,PyTorch官方目前(截至2024年7月)**未正式发布支持CUDA 12.2的预编译版本**[^1][^3]。以下是具体分析: 1. **官方支持情况** - PyTorch最新稳定版(如2.1.x)主要支持CUDA 12.1 - 若系统显示CUDA 12.2,建议降级安装CUDA 12.1以避免兼容性问题 - 典型安装命令: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia ``` 2. **特殊场景说明** 引用[3]提到的DeepSeek 7b模型需要CUDA 12.2,这类情况通常有两种解决方案: - 方案一:使用Docker容器实现版本隔离(如NVIDIA NGC镜像) - 方案二:从源码编译PyTorch适配CUDA 12.2(需较高技术门槛) 3. **版本对照参考表** | PyTorch版本 | 支持CUDA版本 | 备注 | |-------------|--------------|-----------------------| | 2.1.x | 12.1 | 当前主流选择 | | 2.0.x | 11.7/11.8 | 旧版框架常用 | | 1.13.x | 11.6/11.7 | 历史版本 |
评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

骨子里的偏爱

上传不易,还请多多支持。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值