XGBoost获取重要特征名称

在预测的时候,用到XGBoost来对输入的特征进行重要性的排序和筛选。看网上的教程直接用plot_imporance打印出来,这个函数自动将特征按重要性排序并输出得分,但特征较多就会挤在一起看不清,而且我需要在接下来的操作里用到这些特征名称,不能一个一个手打出来。网上没有找到合适的教程,于是记录一下我的思路。

进入plot_importance函数,

可以看到特征以及得分都在importance里面了, 再往下看

 把特征及得分放到元组列表里,对元组进行排序。

受上面的代码启发,我提取特征名称代码如下:

import xgboost as xgb
model = xgb.XGBRegressor()
model.fit(X_train, y_train)#训练模型
importance = model.get_booster().get_score()
tuples = [(k, importance[k]) for k in importance]
tuples = sorted(tuples, key=lambda x: x[1],reverse=True)
feature_names,scores = map(list,zip(*tuples))#zip(*)是对元组解压缩
print(feature_names)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值