对上海市麦当劳、KFC门店分布进行空间分析

本文通过百度地图API获取上海麦当劳和KFC的门店信息,进行了数据处理和分析。利用GIS软件ArcMap计算了两者间的距离,制作了热力图和最近距离面积图,揭示了两品牌在上海的分布特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、数据来源

百度地图API获取上海麦当劳、KFC门店信息,包括名称、经度、纬度、地址。(注意默认坐标系是百度坐标系,如要其他坐标系坐标,添加coord_type参数)

http://api.map.baidu.com/place/v2/search?query=麦当劳&tag=美食&region=北京&output=json&page_size=20&page_num=0&ak=您的ak

通过判断返回json的‘total’标签是否大于0,确定该页是否有内容,是否要爬取,适度增长休眠时间到8s,结果如下:
在这里插入图片描述

2、数据分析与处理

本次实验目的是查看上海麦当劳和KFC门店的分布,并探索两个品牌门店距离关系。门店分布可通过制作热力图直观展示,两个品牌门店距离关系的分析则需要首先利用GIS软件进行数据的处理。这里使用ArcMap的Near工具计算麦当劳与最近的KFC门店的距离(参考Near工具帮助文档,输出单位与源数据单位一致,因此要先对源数据进行project为UTM51,UTM投影参考文档https://blog.csdn.net/aganliang/article/details/83025326),导出excel如下图

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值