在当今快节奏的都市生活中,餐饮品牌的门店布局不仅反映了其市场策略,更折射出消费者对便捷、品质和品牌认同的追求。汉堡王(Burger King)作为全球知名的西式快餐品牌之一,在中国市场同样占据重要地位。自进入中国市场以来,汉堡王凭借其独特的“火烤”特色以及多样化的菜单选择,迅速在全国范围内扩张,并逐渐形成了与本地市场的深度融合,成为肯德基、麦当劳之外的重要竞争者。不同于德克士的“东方口味西式快餐”定位,汉堡王强调的是其独有的火烤工艺和经典的美式风味,吸引了大量追求正宗西式快餐体验的消费者。其门店分布广泛覆盖一二线城市,并逐步向三四线城市下沉,展现出强大的市场渗透力和品牌影响力。
本文将深入探讨GET请求在获取汉堡王官方网站的门店分布信息中的实际应用,并展示如何使用Python的requests库发送GET请求,从汉堡王官方网站提取详细的门店位置信息,涵盖全国范围内的所有汉堡王店铺。处理响应数据的方法包括解析JSON格式的数据或者HTML页面,以便有效地提取所需信息。通过多维度的数据分析视角,挖掘汉堡王门店分布中隐含的市场策略与消费趋势。这项研究不仅能为餐饮行业从业者提供选址决策支持,也可为商业地理学研究提供新的数据支撑,更可为广大消费者带来更加便捷的门店查询体验。
汉堡王官方网站:餐厅 - BURGER KING® 汉堡王中国官网
我们第一步先找到门店数据的存储位置,然后看3个关键部分标头、负载、 预览;
标头:通常包括URL的连接,也就是目标资源的位置;
负载:对于GET请求:负载通常包含了传递的参数,有些网页负载可能为空,或者没有负载,因为所有参数都通过URL传递,这里我们可以看到它的传参包括,省份、地级市,是明文传输;
预览:指的是对响应内容的快速查看或摘要显示,可以帮助用户快速了解返回的数据结构或内容片段;
接下来就是数据获取部分,先讲一下方法思路,一共三个步骤;
方法思路
- 找到对应数据存储位置,获取所有店铺列表的相关标签数据;
- 我们通过改变查询关键字(省份、地级市),来遍历全国门店数据;
- 坐标转换,通过coord-convert库实现GCJ-02转WGS84;
第一步:我们先找到对应数据存储位置,获取所有店铺列表,经过测试,每次查询一类关键词会返回一个html,我们通过修改关键词来进行数据获取,为了方便我们直接建立一个包含省份、地级市字典,通过遍历关键词来查询全国数据;
第二步:利用GET请求遍历获取所有店铺列表,并根据标签进行保存,另存为csv;
完整代码#运行环境 Python 3.11
import requests
import json
import pandas as pd
from datetime import datetime
import math
import time
# 省份和城市数据
PROVINCE_CITY_DICT = {
"北京市": ["北京市"],
"天津市": ["天津市"],
"上海市": ["上海市"],
"重庆市": ["重庆市"],
"河北省": ["石家庄市", "唐山市", "秦皇岛市", "邯郸市", "邢台市", "保定市", "张家口市", "承德市", "沧州市", "廊坊市",
"衡水市"],
"山西省": ["太原市", "大同市", "阳泉市", "长治市", "晋城市", "朔州市", "晋