在国产芯片上实现YOLOv5/v8图像AI识别-【1.3】YOLOv5的介绍及使用(训练、导出)更多内容见视频

本专栏主要是提供一种国产化图像识别的解决方案,专栏中实现了YOLOv5/v8在国产化芯片上的使用部署,并可以实现网页端实时查看。根据自己的具体需求可以直接产品化部署使用。

B站配套视频:https://www.bilibili.com/video/BV1or421T74f
在这里插入图片描述

数据训练

上一篇博客里面我们已经获得了标注好的数据以及图片,接下来我们就要开始训练过程。

数据整备阶段

首先在yolov5的目录下创建一个datasets目录,这一步是个人习惯,我们将要训练的数据都会放在这里。

所有的数据需要按照目录规范进行放置,通常train、val的分配比例为8:2,images和labels里面的内容需要对应。
在这里插入图片描述

yaml文件准备阶段

编写数据说明文件和结构说明文件,找到data目录下创建一个yaml文件,此处以我个人创建的举例。

数据yaml文件

可以直接复制目录中的coco128.yaml进行修改,将其中的download部分删掉。然后更具自己数据的存放路径进行配置。
在这里插入图片描述

train 写训练图片的完整路径,经过多次尝试,写相对路径会有问题。
val 写验证图片的完整路径。系统会自动找到对应的labels目录。
test 可以不用写,对训练结果不会有影响。
nc 写你需要识别的数量。
names 写你需要识别的类别,此处循序一定要注意。

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
#     └── coco128  ← downloads here (7 MB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
# path: ../datasets/cx  # dataset root dir
train: /app/docs/yolov5_v7.0/datasets/cx/images/train  # train images (relative to 'path') 128 images
val: /app/docs/yolov5_v7.0/datasets/cx/images/train  # val images (relative to 'path') 128 images
test:  # test images (optional)

# Classes
nc: 2  # number of classes
names: ['good','bad']  # class names

结构yaml文件

打开model目录,找到下面的yaml文件,此处系统已经默认了一些模型文件。通常不需要进行模型魔改的情况下可以基于pt训练,如果需要魔改模型需要自己重新设置一个yaml文件。此处举例看一下。
在这里插入图片描述
下文是一个修改后的s模型文件,主要修改的就是nc,其他内容如果没有学习过模型魔改就不要动。

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 2  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

橘子的战斗日记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值