本专栏主要是提供一种国产化图像识别的解决方案,专栏中实现了YOLOv5/v8在国产化芯片上的使用部署,并可以实现网页端实时查看。根据自己的具体需求可以直接产品化部署使用。
B站配套视频:https://www.bilibili.com/video/BV1or421T74f
学习本专栏内容需要准备以下硬件设备:
1、RK3588开发板
2、带有 显卡的电脑 或 租借显卡服务器 进行数据训练
3、网络摄像头,也可以使用 模拟视频流 替代
需要具备的编码知识(不需要精通,专栏中会提到部分基础知识):python、C++、java、vue、sql
YOLO:简史
YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的约瑟夫-雷德蒙(Joseph Redmon)和阿里-法哈迪(Ali Farhadi)开发。YOLO 于 2015 年推出,因其高速度和高精确度而迅速受到欢迎。
-
2016 年发布的 YOLOv2 通过纳入批量归一化、锚框和维度集群改进了原始模型。
-
2018 年推出的 YOLOv3