python写hadoop的MapReduce(以数据按要求合并、重排为例)

本文通过实例介绍了使用Python编写Hadoop MapReduce程序,以数据按需求合并和重排为例,详细讲解了mapper.py、reducer.py的实现过程,并涉及到条件合并内容的处理以及中文字符的处理技巧,包括数据预处理、groupby和itemgetter的运用,以及处理中文字符的注意事项。
摘要由CSDN通过智能技术生成

现在已有的很多博客demo都是以wordcount为例,众所周知这是一个非常简单的功能,但凡遇到一些高阶一点的操作我都会大脑一片空白,今天正好有相关的需求,就来学习了一下。
http://www.zhangdongshengtech.com/article-detials/236
上面的链接是记录频次的demo,写的非常的好,相信各位看了它就会了解mapreduce核心的写法

Intro:wordcount

说在前面:mapreduce程序的调试可以单独分别运行mapper和reducer,直接在命令行输入你指定好的输入格式,就会打印出输出

mapper.py

输入文件的形式就是

word1
word2
word1
word3

# coding=utf-8
import sys
 
for line in sys.stdin:
	words = line.strip()
	if not word: continue
	print(word)

reducer.py

这里实现的就是一个简单的计数并把频次写到文件中的操作。
如果你只需要实现计数操作,那么只用修改mapper.py的print的值即可

# coding=utf-8
import sys

count = 0
key = ""
current_key = ""

for line in sys.stdin:
    line =  line.rstrip()
    if not line:
        sys.stderr.write("data is wrong")
        sys.exit(1)
    line = line.rstrip()
    items = line.split("\t")
    current_key = items[3]
    cur_timestamp = items[2]
    if current_key == key:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值