E(XY)的求法

在这里插入图片描述
注意只有当X,Y相互独立时,才有E(XY)=EXEY
而由表格可知,P(X=0,Y=0)=0.07≠P(X=0)P(Y=0)=0.23*0.22
所以X,Y不相互独立

利用随机变量函数的数学期望的求解方法:
E(XY)=∑ i*j*(Pij),其中i为X的取值,j为Y的取值,Pij为对应于X=i,Y=j的联合分布列中的相应概率,求和是对所有的i,j求和。

2.已知X,Y的联合密度,求X,Y的协方差:点击这里。或这里

补充:
1.无偏估计相关:这里

### 实现经纬度坐标到XY坐标系的转换 #### 方法一:基于国家控制点的偏移量法 对于特定区域内的GPS测量点,可以采用已知的国家控制点来计算偏移量。具体过程如下: 通过比较两个同系统的同一位置上的坐标差异获得ΔX 和 ΔY 值。一旦获得了这些偏移参数,则可以通过简单的算术运算将新的 GPS 测定点从其原始地理空间映射至目标投影平面上。 \[ X' = X + \Delta X \] \[ Y' = Y + \Delta Y \] 其中 \( (X', Y') \) 表示转换后的平面直角坐标;\( (\Delta X,\Delta Y )\) 是预先计算好的固定偏差向量[^1]。 #### 方法二:米勒坐标系下的直接变换 另一种常见的做法是在依赖外部参照物的情况下完成这种转变——即使用米勒投影或其他类似的算法模型来进行近似估算。Python 中的一个简单例子展示了如何执行这样的操作并最终得到整数形式的结果存储于列表 `xy_coordinate` 当中: ```python def miller_projection(lat, lon): lat_rad = math.radians(lat) x = lon * 0.017453292519943295 y = 1.25 * math.log(math.tan(0.25 * math.pi + 0.4 * lat_rad)) return int(round(x)), int(round(y)) lat_lon_points = [(latitude_1, longitude_1), ... ] # 输入一系列经纬度点 xy_coordinate = [] for point in lat_lon_points: xy = miller_projection(*point) xy_coordinate.append(xy) print(xy_coordinate) ``` 这段代码实现了对给定的一组纬度和经度值应用米勒正形圆柱投影函数,并将其结果四舍五入取最接近的整数值作为输出[^2]。 #### 方法三:考虑半径误差修正项的方式 当精度要较高时,还可以引入地球椭球体形状所带来的影响因素。例如,在MATLAB环境下有一种较为精确的做法就是考虑到子午圈曲率半径以及卯酉圈曲率半径等因素的影响,从而构建出更加复杂的表达式用于描述该变化关系: \[ s=\left(\frac{a}{b}\right)\cdot b\cdot\left[\left(1-\frac{{e}^{2}}{4}-\frac{3{e}^{4}}{64}-\frac{5{e}^{6}}{256}\right)\varphi -\left(\frac{3{e}^{2}}{8}+\frac{3{e}^{4}}{32}+\frac{45{e}^{6}}{1024}\right)\sin{(2\varphi)}+\left(\frac{15{e}^{4}}{256}+\frac{45{e}^{6}}{1024}\right)\sin{(4\varphi)}-\frac{35{e}^{6}}{3072}\sin{(6\varphi)}\right] \] 这里 s 代表沿某条经线方向上任意两点之间的弧长距离;而 φ 则表示对应地理位置处的纬度角度;另外 e² 定义为第一偏心率平方[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值