3D 生成重建015-Feature 3DGS理解3DGS场景内的一切

33D 生成重建015-Feature 3DGS理解3DGS场景内的一切



0 论文工作

论文提出了一种名为“Feature 3DGS”的方法,该方法通过整合二维基础模型(如SAM和CLIP-LSeg)的特征场蒸馏,显著增强了三维高斯点渲染(3D Gaussian Splatting,3DGS)的功能。这种改进不仅限于新视角合成,还扩展到语义分割、语言引导的编辑和可提示的分割任务等。

主要贡献:
方法创新:提出了一种基于3DGS的新框架,用于通过二维模型指导进行特征场蒸馏。
性能提升:该方法相比基于NeRF的方法,训练和渲染速度提升至2.7倍,同时在语义分割任务中实现了23%的mIoU改进。
多样化应用:展示了方法在语义分割、语言引导的编辑及无提示的分割任务中的优越性能。
首次支持提示编辑:利用SAM模型实现了对三维场景的点和边界框提示操作。
核心改进:
针对NeRF方法的局限性(训练和渲染速度慢、连续性伪影),本文提出了一种并行N维高斯渲染器,并结合卷积解码器加速训练和渲染。
实验结果表明,该方法在保持高效的同时,能生成高质量的语义特征场和图像,适用于多种下游任务。
应用场景:
论文证明了其方法在新视角语义分割、语言引导编辑以及实时渲染等任务中的潜力,特别适用于需要高效且精确的三维语义表示场景。
在更早的Segment Anything in 3D with NeRFs中是更早用sam信息蒸馏到3D表示中。不过期间的nerf可以用新的分支来存放预测语音特征。在3DGS中原来的管道直接渲染高纬度的特征会很慢,论文提出先渲染一个低纬度特征再升维特征的方法进行加速。前期也有直接用CLIP,DINO的特征进行场景的理解的工作。
paper
github

1 方法介绍

下图是论文的结构图, ( x , ( q , s ) , c , α , f ) (x, (q,s), c, \alpha , f) (x,(q,s),c,αf),q, s表示的是四元组表示的旋转平移,f是语义特征。语义的渲染方式跟图像的渲染方式一样。只不过如果直接渲染高位的SAM或者CLIP特征的话,维度会很高,这就会造成基础管线并不支持 这样的操作。为了简化问题,语义特征先优化一个低维的语义特征,然后进行升维。升维的信息用2d的基础模型进行监督。通过训练优化后语义信息就潜入到f中。也许我们可以找到新的方式来优化这个特征的潜入方式。i think.

在这里插入图片描述

2 实验效果

实验结果可以在网站找到,project

03-09
### 3DGS 技术概述 3DGS(3D Gaussian Scattering)是一种基于高斯分布的三维场景表示与渲染方法,主要用于高效建模和渲染复杂的三维场景,尤其适用于动态环境或需要实时性能的应用。其核心思想是将三维空间中的物体或体积表示为多个高斯函数的集合,并通过优化这些高斯参数来拟合观测数据(如多视角图像),最终实现高质量的渲染效果[^2]。 #### 应用领域 为了实现复杂场景的有效构建与交互体验提升,研究涉及多种扩展现实(XR)技术,例如动作捕捉、面部捕捉、文本到一切、2D 和 3D 化身创建、虚拟制作流程、摄影测量法、3D 索具设计以及 LiDAR 扫描等手段[^1]。特别是在自动驾驶模拟方面,神经渲染借助深度学习算法能够从新角度真实再现静态乃至动态环境,从而提供更加沉浸式的用户体验[^4]。 #### 多模态数据处理能力 值得注意的是,在实际项目实施过程中往往面临不同类型传感器获取的数据融合挑战。针对此情况,3DGS 提供了一种有效的解决方案——即采用统一框架下的多源信息表达方式,比如结合LiDAR点云结构特征同传统光学影像色彩属性于一体,形成更为丰富的感知描述模型[^3]。 ```python import numpy as np def gaussian_scatter(points, sigma=0.5): """ 对给定的空间坐标应用高斯散射效应 参数: points (np.array): 输入的空间坐标数组 sigma (float): 高斯标准差,默认值为0.5 返回: scattered_points (np.array): 经过高斯变换后的坐标集 """ noise = np.random.normal(0, sigma, size=points.shape) scattered_points = points + noise return scattered_points ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值