经颅磁刺激(TMS)在目标皮层和相关脑区引发神经元活动。这种诱发的脑反应可以通过脑电图(EEG)测量。TMS与同步EEG(TMS–EEG)的结合被广泛用于以高时空分辨率研究皮层的反应性和连接性。从方法学上讲,TMS与EEG的结合具有挑战性,该领域还有许多未解决的问题。人们使用不同的TMS–EEG设备以及数据采集和分析方法。缺乏标准化可能影响可重复性,限制不同研究实验室所产生结果的可比性。此外,关于听觉和躯体感觉输入在经颅诱发EEG中所起作用的程度还存在争议。这篇综述为希望使用TMS–EEG研究人类皮层反应性的研究人员提供了指南。一个由全球TMS–EEG专家组成的小组涵盖了TMS–EEG实验中应考虑的所有方面,并在可能的情况下为有效的TMS–EEG记录和分析提供了方法学建议。该小组识别并讨论了该技术的挑战,特别是关于记录程序、伪迹校正、分析和经颅磁诱发电位(TEPs)的解释。因此,这项工作提供了TMS–EEG方法学的广泛概述,可能会促进各研究组之间实验和计算程序的标准化。本文发表在Brain Stimulation杂志。
本文亮点
-
TMS−EEG 是用于基础研究和临床应用的强大技术。
-
TMS−EEG 的方法学结合具有挑战性。
-
缺乏标准化可能影响可重复性,限制各研究组结果的可比性。
-
本文涵盖了 TMS−EEG 实验中应考虑的所有方面。
-
我们提供了有效的 TMS−EEG 记录和分析的方法学建议。
关键词
经颅磁刺激 脑电图 TMS−EEG数据分析流程 TMS−EEG TEPs 伪迹
1.1. TMS–EEG 的电生理学方面
1.1.1. 经颅磁刺激(TMS)
TMS 通过感应电磁刺激来兴奋大脑中的轴突。一个强大且非常短暂的磁场通过传输线圈传递到大脑。变化的磁场在皮层中感应出一个随时间变化的电场(E-场)。根据 E-场相对于皮层和皮层神经元的几何结构的方向,E-场会导致受刺激脑区轴突的去极化。根据去极化的程度,可能会触发动作电位,这些电位沿着轴突正向(朝向轴突末端)和反向(朝向细胞体)传播。被激发的轴突作用于的神经元通过跨突触激活,会在目标部位的皮层锥体神经元的树突树上诱发突触后电流。突触后电位可能在空间和/或时间上累加。如果累加足够大且涉及足够大的皮层区域,突触后电流将导致可测量的 EEG 信号。同时,沿着锥体神经元的激活扩散会引起连接的皮层下结构和皮层脑区的二次兴奋或抑制。连接皮层区域中锥体神经元或其他细胞的树突树中突触后电流的时空累加也可能导致可测量的 EEG 信号,贡献于经颅诱发的 EEG 反应。
TMS 基于法拉第定律描述的电磁感应。TMS 脉冲由流过 TMS 线圈绕组的强电流(约 5 千安培)启动。该电流产生一个随时间变化的磁场,不受阻碍地穿透头皮和颅骨,感应出一个 E-场。大脑是一个导体;因此,在大脑中感应出涡流(即在闭合回路中循环并与 TMS 线圈中的电流方向相反的电流),这些涡流可以使神经元去极化,产生神经元放电。人们认为,TMS 激活了在感应 E-场中具有轴突弯曲或其他几何不均匀性或末端的皮层神经元,因为沿着神经突的 E-场在这些位置变化最快。磁脉冲的强度约为 1–3 特斯拉,上升时间约为 50–100 微秒。由于脉冲持续时间短,TMS 的时间分辨率为亚毫秒级,这允许对大脑进行实时调制。TMS 刺激的皮层区域的空间范围取决于线圈几何形状、刺激强度、目标区域,因此也取决于线圈到皮层的距离。由于磁场随距离迅速衰减,且感应的 E-场在头部中心趋近于零,TMS 对浅层皮层的刺激比深层更强。然而,感应的神经元活动还取决于其他方面(如神经结构的定位和取向以及膜特性)。总之,除了刺激目标区域和周围组织外,TMS 还间接激活了突触互连的部位,这一特性在大脑连通性研究中得到利用。当刺激强度(SI)足够时,局部诱发的动作电位可能沿着解剖连接在同一皮层柱内跨越皮层层传播到其他皮层和皮层下区域(例如,参考文献[14]),并可能导致整个网络的激活。伴随 TMS 的事件级联如图1所示。
图1. TMS 脉冲触发的事件链
(1–2) 电流脉冲通过 TMS 线圈(最大电流约 5 kA),产生一个短暂(约 100 微秒)但强大的磁场(最大磁感应强度约 1–3 特斯拉)。
(3) 变化的磁场在大脑中感应出电场(约 50–100 V/m),进而
(4) 在组织中产生电流(约 0.1 mA/mm²)。
(5) 电流的流动(即离子)导致局部膜去极化(>∼10 mV)。
(6) 电压门控离子通道被打开,
(7) 在去极化达到发放阈值的轴突中产生动作电位。
(8) 神经递质在突触间隙中释放。
(9) 产生突触后电流,导致突触后兴奋(和抑制)电位,如果超过发放阈值,进一步导致动作电位的产生。这种跨突触激活代表了网络的激活。由突触后电流产生的电位差(电场),驱动了头部和头皮内的体积电流。
(10) TMS 引发的激活可以用 EEG 记录。请注意,EEG 信号可以用线性模型描述,Y = B + A + N(参见第 6.1 节)。
大脑中由 TMS 诱发的活动可以通过不同的神经影像技术记录,如 EEG、功能性磁共振成像(fMRI)、近红外光谱和正电子发射断层扫描。然而,最成功且常用的组合是与 EEG,因为它是一种广泛使用的方法,比其他神经影像技术更便宜,并且在技术上最不复杂,易于在线与 TMS 结合。
1.1.2. 脑电图(EEG)
尽管测量技术有所发展,但 EEG 的基本原理自 Berger 时代以来仍未改变。EEG 具有毫秒级的时间分辨率和厘米级的空间分辨率,被广泛用于非侵入性地研究大脑的电生理动态。EEG 测量放置在头皮上的一对电极之间的电位差。记录的信号是源电流幅度的线性混合,且相邻电极的信号通常是相关的。EEG 信号主要归因于突触后电位的同步性,而非动作电位。与突触后电位相比,动作电位的持续时间较短;因此,动作电位在时间上不太重叠,且同步性远低于突触后电位。此外,由于其对称的电流分布,动作电位产生的电场随着距离的衰减速度比突触后电流更快。突触后电位主要限制在树突和细胞体中。当有足够数量的神经元——几千个或更多——具有相似的整体取向并产生同步的突触后电流时,产生的电场和体积电流会叠加,使得在头皮水平记录皮层 EEG 反应成为可能。
1.1.3. TMS–EEG
将 TMS 与 EEG 结合,为以新方式解决基础神经科学问题提供了重要意义。特别是,这两种技术相互补充,TMS 提供的因果信息克服了 EEG 数据的相关性质,而从整个头皮记录的能力提供了由电场产生的大脑活动的全局图景。使用 TMS–EEG 的主要优势之一是,从 EEG 对 TMS 的反应(即诱发电位或脑振荡)中得出的结果指标可以作为任何大脑区域兴奋性或连通性的神经生理学标志,包括那些 TMS 不产生皮层/皮质脊髓兴奋性代理(如运动诱发电位(MEPs)或磷光现象)的区域。尽管 TMS−EEG 数据可以在时间和频率域中分析,但迄今为止,大多数研究都集中在前者,即所谓的 TMS 诱发电位(TEPs)上。
1.1.4. TEPs 和 TMS 触发的振荡
TEPs(TMS 诱发电位)是与 TMS 脉冲同步的脑电位。为了研究 TEPs,信号需要在多次试验中平均。初始的 TMS 诱发反应可能是由集中在目标区域的神经元激活引起的,随后是轴突互连区域的激活。关于如何测量 TEPs 的不同方法已在其他地方进行了综述。
TEPs (TMS 诱发电位)包含正(P)和负(N)偏转,反映了兴奋性和抑制性突触后电位的时空叠加,类似于所谓的事件相关电位(ERPs)。尽管 TEPs 的神经生理基础尚未完全阐明,但它们被认为是皮层反应性的真实、可重复的测量指标。对初级运动皮层(M1)的 TMS 可诱发多个峰值,大约在15毫秒(N15)、30毫秒(P30)、45毫秒(N45)、60毫秒(P60)、100毫秒(N100)和180毫秒(P180)处出现。然而,最近的研究表明,较晚的峰值(>∼80毫秒),如 N100 和 P180,可能会受到感觉诱发反应的污染(参见第 3.5、4.2.3 和 4.2.4 节),而非常早期的峰值,如 N15,则可能受到颅骨肌肉反应的污染(参见第 4.2.2 节)。
TEPs (TMS 诱发电位)可在刺激区域周围以及远处互连的大脑区域检测到,持续时间可达400−500毫秒。因此,对于某些 TEP 组成部分,最大幅度在靠近刺激部位的电极记录,而其他可能在远处电极(例如,对侧半球上方)更为显著。有证据表明,TEPs 与不同的神经递质在不同程度上相关(例如,参考文献[^39^])。TEP 的峰值和时间过程取决于被刺激的区域、线圈方向和底层皮层的功能状态;后者可能取决于行为、意识水平(例如,参考文献[41][42])和神经精神疾病(例如,参考文献[43])等因素。此外,TEP 的幅度还受到所应用的 TMS 脉冲强度的影响(例如,参考文献[44][45])。
TMS 对大脑活动的影响还可以在频域中进一步研究。当皮层区域受到 TMS 干扰时,EEG 测量的神经元反应倾向于以特定的自然频率振荡。这种反应的部分原因可能是由于 TMS 脉冲对目标皮层的影响,使正在进行的局部大脑振荡的相位对齐。因此,TMS–EEG 可用于通过测量 TMS 脉冲对 EEG 和相关行为效应的影响来操纵和研究大脑节律。用于研究 EEG 振荡的相同方法也可用于 TMS 触发的振荡。由于该主题超出了本文的范围,且在其他地方已被广泛讨论,我们建议读者参考以前的文献(例如,参考文献[5][53])。然而,研究人员应仔细区分 TMS 诱发的反应(即,与相位锁定的信号,因而在单次试验平均过程中得以保留)和 TMS 引起的反应(即,非相位锁定的信号,因而在平均过程中被抵消;例如,参考文献[54])。后者需要在单次试验水平上计算时频表示(TFR),随后进行平均,以保留与 TMS 脉冲相关但未相位锁定的振荡活动。值得注意的是,这种测量方法(有时也称为 TMS 相关频谱扰动,TRSP)可以涉及某些基线归一化操作,揭示出相位锁定和非相位锁定反应的混合,这些反应难以解开。
在整篇文章中,当描述 TMS 的 EEG 反应时,我们主要指的是 TEPs,但除非另有说明,同样的考虑也适用于 TMS 诱发和 TMS 引起的振荡活动。
2. TMS–EEG 仪器设备
本节旨在全面概述当前可用于获取 TMS–EEG 数据的设备,并讨论不同设置/参数如何影响记录的质量。为此,我们回顾了已发表的证据、报告的实践以及不同实验室记录的经验。
获取 TMS−EEG 数据的仪器通常包括:a)TMS 设备和线圈,b)TMS 兼容的 EEG 放大器,以及 c)TMS 兼容的电极。强烈建议整合一个神经导航系统,以在整个会话期间和纵向测量的多次访问中,将 TMS 线圈保持在所需目标的相同方向和角度上。此外,在涉及有结构性脑损伤患者的研究中,使用神经导航系统是强制性的,因为刺激严重受损的区域不会引起任何 EEG 反应。在以下章节中,我们将描述每个组件。
2.1. TMS 刺激器
目前,市场上有多种 TMS 刺激器可供选择。在进行 TMS−EEG 研究时,以下特性可能有用。
1.控制充电延迟的选项:在电容器充电过程中,线圈的电位变化可能会在 EEG 记录中引起电伪迹。由于充电通常发生在与相关信号重叠的时间窗口内,至关重要的是将充电时间设置在感兴趣的时间窗口之外(即,充电延迟不应与 TMS 后的相关信号重叠)。为满足此要求,目前市场上大多数刺激器(例如,MagVenture、Nexstim、Magstim 和 Deymed 刺激器的某些版本)都包括充电延迟选项,允许选择充电时间(有关此伪迹的更多详细信息,参见第 4 节)。
2.生成不同的脉冲波形:最常用的是单相和双相波形,尽管现有的刺激器可以生成其他波形,例如半正弦和梯形波。
3.一些刺激器可以改变线圈中感应电流的方向:这可能与研究感应 E-场方向对大脑活动的影响有关。
4.兼容不同尺寸/形状的 TMS 线圈:例如,这在需要在头部放置两个或更多线圈的多部位 TMS−EEG 研究中非常有用。
5.用于运行长时间协议的冷却系统:为了提高 TMS–EEG 数据的信噪比(SNR),通常建议平均足够数量的试验。在刺激过程中,TMS 线圈的加热速率取决于刺激强度(SI),并且可能需要在达到特定温度后停止工作,以确保安全。液体或空气冷却的线圈可减少线圈加热。
6.TMS 刺激器、EEG 和神经导航之间的触发信号通信:硬件之间的通信至关重要,即通过外部设备或导航系统控制刺激器的属性(如 SI(刺激强度)、刺激间隔/随机化)。
2.2. TMS 线圈
目前,市场上有许多不同类型的 TMS 线圈 。总体而言,线圈的选择取决于要执行的 TMS 协议。它们的形状、尺寸和绕线决定了感应的电场(E-场),因此决定了聚焦性和穿透深度,从而影响被刺激的大脑体积 ,进而影响与 TMS 相关的 EEG 反应。最常见的 TMS 线圈是“八字形”线圈,但到目前为止,还没有系统地研究 TMS 线圈对 TMS 相关 EEG 反应的影响。此外,线圈的类型也可能决定在多大程度上会刺激到感兴趣区域附近的颅骨肌肉,影响 EEG 记录。因此,应该注意头皮、面部和颈部肌肉的激活;例如,双锥线圈可能会引发强烈的肌肉抽动,影响 EEG 记录(例如,参考文献 [60])。值得注意的是,一种新的大脑刺激方法最近被引入,即多位点 TMS(mTMS),它允许对多个大脑区域在不同时间和强度下进行电子控制的刺激(关于 TMS–EEG 和 mTMS 的示例,见参考文献 [64])。
2.3. TMS 脉冲波形的影响
在本节中,我们将简要概述当前关于 TMS–EEG 记录中两种最常见脉冲形状,即单相和双相波形的知识 。
单相和双相脉冲是根据电场波形的第一和第二相的幅度比来定义的。单相脉冲较短(通常约 100 微秒),由线圈中陡峭的初始电流组成,这个电流负责神经元的去极化。刺激器中的开关或二极管防止线圈电流反向流动(见图 2)。尽管如此,当线圈电流(以及随之而来的磁场)返回零时,大脑中总会存在相反方向的感应电流。然而,这个相反方向的电流仅仅结束了去极化阶段,不会触发任何动作电位;因此,生物学上相关的电流是单向的。
图 2. 单相和双相脉冲的比较
单相脉冲(左图)由陡峭的初始电流组成,而双相脉冲(右图)则由两个相反极性的半周期组成(详细描述见正文)。该图展示了单相和双相磁脉冲的时间进程,包含磁场强度 B(实线)及其变化率 dB/dt(虚线),后者与感应电场强度相关。
双相脉冲的持续时间更长(可达数百微秒),通常至少包含两个相反极性但幅度相似的半周期(因此,幅度比接近 1),其形状在不同的刺激器之间略有变化。与单相脉冲相比,每个线圈电流相都能有效地刺激皮层,尽管由于第二相的幅度和持续时间变化更大,它对大多数 TMS 效应的贡献更大。换句话说,对于单相脉冲,第一相在兴奋皮层神经元方面更为重要,而对于双相脉冲,第二相更为有效。由于这一差异,在研究电流方向的影响时,通常优先使用单相脉冲,因为双相脉冲的电流方向影响不那么明显。
脉冲方向:从实用角度来看,脉冲波形和刺激器品牌决定了大脑中感应电流的方向。例如,对于 M1 区的刺激,单相脉冲在脑组织中的最佳电流方向是从后向前和从侧向中。使用 Magstim 设备,为了产生这种电流(通过线圈中相反方向的电流变化),单相脉冲时线圈手柄应指向后方,双相脉冲时手柄应指向前方。对于 MagVenture(MagPro),默认设置下 M1 刺激的最佳电流是通过单相脉冲时手柄指向前方、双相脉冲时手柄指向后方产生的。Magstim 和 MagVenture 刺激器之间的区别在于线圈中的电流方向,对于 MagVenture,电流从手柄流向线圈末端,反之对于 Magstim(见图 3)。
图 3. 两种不同刺激器感应电流方向的示例
在 Magstim 刺激器(左图)中,线圈中的电流如曲线箭头所示,从顶部流向手柄。大脑中感应的电流方向相反,因此定义为从后向前,如直箭头所示。在其他刺激器(如 MagVenture,右图)中,情况相反。线圈中的电流如曲线箭头所示,从手柄流向顶部,因此大脑中感应的电流从前向后流动,即为从前向后的电流。
单相和双相脉冲各有独特的优点和缺点;因此,选择将取决于研究问题。先前的研究表明,双相波形更为有效,即需要较低的磁场来刺激皮层(例如,较低的静息运动阈值),因此在 TMS−EEG 实验中可能更受青睐,因为许多 TMS 相关伪迹的严重程度随着刺激强度(SI)的增加而增加(例如,肌肉伪迹)。较低的强度也会降低参与者的不适感。
有报告称,不同的波形会影响初始 TMS 伪迹的幅度,但不会影响其持续时间。在对假人头模进行刺激后,两项独立研究报告称,与双相脉冲相比,单相脉冲诱发了更大的伪迹,但无论波形类型如何,EEG 信号在脉冲发出后 5 毫秒内恢复到基线水平。值得注意的是,虽然这些结果表明伪迹的持续时间不取决于波形,但这 5 毫秒的间隔取决于 EEG 设备和记录参数(第 2.4 节)。此外,尽管发现初始伪迹的持续时间相似,但这并不排除对后期伪迹的影响(本文的一些作者确实报告称,单相波形会导致偏移,减慢 EEG 信号恢复到基线的速度)。
最近,Casula 等人使用 TEPs 研究了 TMS 脉冲波形对大脑活动的影响。作者发现,与双相脉冲相比,由单相脉冲诱发的 50 至 200 毫秒之间的 TEPs 特征为更大的幅度。然而,脉冲形状对 TEPs 的影响尚未被系统地研究,仍需更多研究。
2.4. EEG 放大器
在 TMS 过程中记录 EEG 所面临的第一个方法学挑战是磁脉冲产生的强电场(E-场),它可能会使记录放大器饱和,持续数秒。为了解决这个问题,引入了一个采样保持电路来控制记录设备并锁定 EEG 信号。该电路在 TMS 施加后的几毫秒内保持 EEG 采集,从而避免了记录放大器的饱和,并允许在保持期间后记录由刺激产生的反应。近年来,新一代放大器取代了采样保持电路的方法。这些放大器被设计用于高时变磁场中工作,从而避免了饱和,原则上具有允许连续采集 EEG 的优势。然而,刺激伪迹覆盖了一小部分信号,可能包括直接刺激的皮层目标的初始反应,当前的预处理方法无法恢复这些信号(参见第 4 节)。关于不同 TMS 兼容 EEG 系统的概述,请参阅补充材料(表 S1 和问卷)。
尽管缺乏系统性的研究,我们知道某些记录参数在限制初始电伪迹(高幅度和高频信号)的影响方面比其他参数更有效。如 Freche 等人的图 8 所示(另见 [83]),并且正如许多制造商所建议的那样(补充材料表 S1),必须选择适当的采样率以及相应的低通截止频率。低通频率越低,由滤波器与 TMS 脉冲伪迹的相互作用所产生的波纹持续时间越长。如果以非常高的速率采样,脉冲伪迹只持续实际 TMS 脉冲的时间,并且反映脉冲形状。随着较低的采样率(因此也有较低的抗混叠低通滤波器),滤波器波纹的幅度和持续时间增加,出现更长的脉冲伪迹。例如,使用相同的放大器和实验设置,Veniero 等人报告在 5 kHz 采样率下伪迹持续时间为 5 毫秒,而 Bonato 等人在 1 kHz 采样率下报告伪迹持续时间为 10 毫秒。
如补充材料中的表 S1 所报告,所有 TMS 兼容的 EEG 放大器都可以以高采样率记录数据。值得一提的是,一些公司报告称,在 ∼20 kHz 的采样率下,伪迹持续时间低于 2 毫秒,而在 80 kHz 采样时甚至低于 1 毫秒(与 Freche 等人 的结果一致)。然而,脉冲波纹伪迹的确切结束点可能难以客观确定。
为了避免进一步的波纹,应尽可能避免或谨慎选择额外的低通滤波器。虽然低通滤波器可以降低脉冲伪迹的幅度,但会增加其持续时间。由于被脉冲伪迹覆盖的 EEG 信号无法恢复,且稍后会被移除,其幅度和剪裁可以忽略不计,应尽可能缩短其持续时间。出于类似原因,DC 放大器比 AC 放大器更可取,因为高通滤波器也会与脉冲伪迹相互作用,并在 TMS 脉冲周围的信号中引入人为趋势/漂移(有关高通滤波器影响的详细讨论,见 [84])。值得注意的是,高通滤波器还可能影响后期的伪迹和 TEPs。对于 DC 放大器,应使用无高通滤波器或非常低的高通滤波器(例如,0.016 Hz,即 10 秒时间常数)来防止/减少此类趋势。
有关可用的 TMS 兼容 EEG 系统的列表,请参阅补充材料,我们在其中报告了问卷的结果,我们已请多家制造商填写了有关每个系统的一般信息。
2.5. EEG 电极
在标准 EEG 中,可以使用四种类型的电极:被动电极、主动电极、干电极和海绵电极。然而,传统的 EEG 电极不能与 TMS 一起使用,因为磁脉冲会引发涡流(即在闭合回路中循环的电流)并导致电极发热。使用烧结的 Ag/AgCl 颗粒电极或 C 型电极(即具有防止闭合环路感应电流的狭缝的环形电极)可以减少这些问题,这些电极已在大多数 TMS–EEG 研究中使用。颗粒电极的一个缺点是需要相当多的准备时间才能将阻抗降低到可接受的值(5 kΩ 或更低)。所谓的多电极(EasyCap)是 C 型电极,其中 Ag/AgCl 涂层位于 C 型环的内表面而不是下表面。由于接触面积更大且更容易接触,本文的许多作者报告称,阻抗可以更快地降低。C 型电极通常更受欢迎,因为它们减少了 TMS 引起的涡流,可能有助于衰减伪迹(参见第 4.1.3 节)。
2.5.1. 主动电极 vs. 被动电极
主动电极(AEs)近年来才在电生理学中引入。与作为简单记录点的传统被动电极(PEs)相比,主动电极在电极阶段直接对信号进行预放大。在记录标准 EEG 时,这一特性提供了若干优势,例如减少电线噪声并在较高的电极阻抗水平下记录更好的信号。此外,主动电极安装的简便性和快速的准备工作缩短了实验时间,减少了参与者的不适感。
最近,一些研究使用主动电极和新型主动放大器在 TMS 过程中记录 EEG。其中一项研究通过观察 TEPs 直接比较了主动电极和被动电极的性能,并未发现幅度或头皮电极分布上的显著差异。然而,一些主动电极用户观察到衰减伪迹的持续时间增加(参见第 4.1.3 节),这一点需要进一步研究。此外,虽然主动电极减少了准备时间,但其较大的厚度增加了线圈与皮层的距离,并需要更高的 TMS 强度,这可能会影响 EEG 信号质量并降低刺激的空间特异性。这也不利于激活阈值,并应在报告和比较不同研究中的阈值时加以注意。总体而言,尽管主动电极似乎对 TMS−EEG 领域有用,但需要更多的研究来评估其在不同实验设置中的性能。
2.5.2. 我们需要多少电极来记录可接受的 EEG 反应?
该领域一个常见的问题是应该使用多少电极。最初的国际 10-20 系统的设计目的是每个电极能够反映其下方大脑结构的活动。电极电位通常相对于同一参考电极测量,因此关于参考电极位置的适当性存在争议。目前,由于我们理解了 EEG 信号的敏感性模式,我们不再需要担心参考电极的“问题”。参考是一种线性数据转换,因此数据可以离线重新参考。除非参考位置特别容易受到局部伪迹的影响(例如运动、出汗、TMS 等),否则可以通过稍后的重新参考到公共平均值(或任何其他首选的线性重组)来恢复参考信号,因此在记录过程中参考是任意的。
每个电极导联测量两个头皮电位之间的差异,告诉我们大脑中源电流分布的一个维度。这个维度由导联的敏感性模式或导联场描述,取决于电极的放置位置以及头部导电性分布的细节。当电极数量在最初的几十个之后增加时,每个新记录通道的边际效益迅速下降,因为相邻电极感知到几乎相同的电位。研究发现,使用大量电极组获得的数据的秩通常为 30-50,这意味着如果电极在头皮上放置得当,30-50 个电极足以获得 EEG 可用的空间信息。由于电极放置通常没有得到优化,约 60 个电极(实践中通常为 64 个)就足以从头皮记录中获得几乎所有的信号成分。
然而,使用更多电极也有一些优势。首先,如果在 256 通道系统中一个电极通道变得嘈杂或无法工作,几乎不会失去任何空间维度,因为冗余通道可以提供丢失的信息。其次,如果可以假设相邻电极通道中的噪声是统计独立的(如果噪声主要来自电极接触和放大器),则整体信噪比(SNR)会增加;实际上,数据分析过程中相邻通道的信号会被有效地平均。因此,由于源级信噪比原则上与噪声不相关的通道数量的平方根大致成正比,电极数量从 64 增加到 256 可以将源级信噪比提高一倍。事实上,一些数据清理方法,例如源估计噪声丢弃算法(SOUND 算法,参见第 6.3.3 节的详细信息),利用通道间的交叉验证来检测特定通道的噪声。对于这些方法,在空间上“过采样” EEG 对于估计噪声分布是有益的。然而,也可以通过改进电极接触和降低放大器噪声水平来提高信噪比。第三,通过额外的电极可以更准确地识别由于颅骨肌肉激活引起的伪迹。由于 TMS 只激活线圈下方的肌肉,在一些实验中,只需在 TMS 目标区域添加几个检测肌肉活动的电极即可。这些额外的电极可以测量和模拟肌肉电活动的空间模式,从而可以从其余数据中去除伪迹。
2.6. 神经导航
神经导航在 TMS 研究中变得越来越重要,因为它提高了刺激的准确性和效率。通过导航 TMS(nTMS),可以实时监控线圈的位置和方向,确保在整个实验过程中对目标区域进行适当的刺激。这减少了由于线圈移动导致 TMS–EEG 记录中的可能试次间差异,并通过减少刺激略微不同区域的风险来提高准确性。由于神经导航系统可以存储线圈位置和方向的信息,它们还确保了多次会话之间的目标定位一致性和结果的可重复性。某些系统在偏离目标时可以标记 EEG 试验。
先进的神经导航系统可以计算大脑中的感应电场(E-场),从而实现精确的解剖学刺激定位;E-场的强度还可作为一种与线圈或刺激器类型无关的刺激强度(参见第 3.2 节)。使用 nTMS 使感应电流方向与大脑沟回模式对齐,预计还可以提高 TMS 的有效性。当电流垂直于目标沟回时,刺激强度增强,而与其平行时则较弱(关于建模,参见参考文献[103];关于平行电流作为对照的应用,参见参考文献[104])(另见第 3.4 节)。现有的 nTMS 系统使用球形导体模型来估计感应的 E-场,从而考虑头骨的局部曲率,并在个体的解剖 MRI 上显示结果以协助线圈定位。另一种提高目标定位和准确性的方法是使用逼真的边界元素头模型。虽然 TMS–EEG 研究可以从基于逼真头模型的神经导航系统中受益,但由于计算成本,这些模型尚未在线实施。
机器人导航的 nTMS 也被用于结合 EEG 评估线圈位置准确性对 TEPs 的影响,并绘制多个大脑区域的 EEG 反应图。其理念是自动定位允许我们在合理的时间内以高精度靶向刺激多个皮层区域。然而,机器人导航的 TMS–EEG 可能会增加来自机器人电子设备的线路噪声,这可能需要在 TMS 线圈和 EEG 帽之间增加一个间隔装置,或采用额外的接地措施。
3. TMS–EEG 的一般方面
3.1. 试次数量(信噪比)
EEG 和 TMS−EEG 社区中最常见的问题之一是“在实验中需要获取多少个试次才能获得有意义的 TEPs 或振荡?”虽然这是个简单的问题,但并没有简单的答案。
试次数量取决于信号与噪声的比率,即信噪比(SNR)。信噪比取决于试次数量的平方根,前提是每次试验中的信号和噪声相似。更详细地说,设 S 为信号大小,N 为单次试验中的噪声大小,T 为试次数量。单次试验的信噪比定义为 S/N(信号除以噪声)。平均反应(如 TEPs)的总信噪比等于 (S/N) ∗ sqrt(T)(即单次试验的信噪比乘以试次数量的平方根)。当有意义的信号接近噪声水平时,需要更多的试次。然而,如果单次试验中的有意义信号低于噪声水平,则需要更多的试次。所需试次数量还取决于设定的质量标准,即所需的信噪比。如果已知所需的信噪比,并且已知单次试验的信号和噪声水平,则可以计算出所需的试次数量。如上所述,信噪比的增加不是线性的,因此将试次数量加倍不会使信噪比加倍。例如,要将 100 次试验的信噪比加倍,则需要测量 400 次试验。这意味着在某个点之后,进一步提高信噪比会导致实验时间过长而收益不大。信噪比的幂律还具有其他正面影响。当记录了足够数量的试次后,不必过于担心剔除被污染的时间段,因为这对潜在的最大信噪比只有轻微影响。例如,在记录了 300 次试次后,可以剔除 30 次试次,理论上的最大信噪比仅减少 5%。
如果 TEPs (TMS 诱发电位)是感兴趣的信号,那么设定试次数量的一个良好起点是查看研究测试-重测信度和可重复性的研究。许多这些研究表明,大约 100 次干净的试次(注意:干净指的是剔除伪迹时间段后的试次数量)足以获得可靠的 TEPs。然而,大多数研究是在运动区进行的,因此这一结论可能不适用于其他区域。此外,弱皮层反应往往需要比强皮层反应更多的试次。例如,有报告称 TEP 峰值的可靠性取决于所研究的成分,而试次间的一致性在 60 次试次后达到平台期,而最小可检测差异随着试次的增加继续改善。
由于皮层反应幅度与施加的 SI (刺激强度)相关,低强度通常需要更多的试次。Rosanova 等人建议,高信噪比所需的试次数量在 150 到 300 之间,具体取决于刺激强度(作为经验法则,强度越高,所需的试次数量越少)。尽管这是一个不错的方法,但需要注意的是,不同位置的皮层反应强度不同,增加 SI 也可能对 TMS 引起的颅骨肌肉激活、电压衰减和感觉诱发电位产生影响。因此,不同的目标区域可能需要不同数量的刺激。例如,刺激额叶区域比运动区更容易受到伪迹的影响,可能需要更多的试次,因为由于伪迹(如眨眼和肌肉收缩)而剔除错误试次的可能性更大。然而,遵循 TMS−EEG 的良好准备和记录实践可以帮助减少噪声并在合理的试次数量下获得更好的信噪比(参见第 5 节)。
选择试次数量时还应考虑我们感兴趣的结果指标类型。因此,我们建议参考相关的 EEG 文献来确定试次数量。例如,与频域相关的指标(如刺激前相位估计)被认为强烈依赖于试次数量(关于综述,见[115])。TMS−EEG 数据并不例外,正如 Schaworonkow 等人所证实的那样,如果感兴趣的测量指标是 TMS 脉冲之前 EEG 信号的相位,则相位估计算法强烈依赖于信噪比。
3.2. TMS 阈值的确定
有几种方法可以确定 TMS 的刺激强度(SI)或阈值,这取决于所选择的结果测量指标以及一个相对任意定义的标准。阈值可以通过测量运动反应、磷光感知、原则上还可以通过 TEPs 的振幅来确定,或者通过模拟感应电场(E-场)来估计。
运动反应:确定 SI 最常见的方法是测量静止肌肉中的运动阈值(MT)。首先映射目标肌肉的 M1 皮层代表区,然后找到该肌肉的最佳位置和线圈方向,从而最大化肌肉皮层代表区(“热点”)的 E-场。MT 的测量是通过将 E-场导向热点,通常定义为 TMS 的最小强度,能够在目标对侧肌肉(被刺激半球)10 次连续试验中至少 5 次引发 50 μV 峰峰值的运动诱发电位(MEP),例如参考文献 [117][118]。需要注意的是,由于 TMS 引发的 E-场扩散和皮层代表区的重叠,相邻肌肉中也可能引发 MEPs。为了避免累积效应,连续 TMS 脉冲之间的刺激间隔(ISI)应设置得足够长(例如,参考文献 [120][121]);已有证据表明,ISI 为 5 秒或更长时间会提高 MEP 测量的可靠性。此外,随机 ISI 以避免预期和习惯效应也是有益的。如果 TMS−EEG 测量的 SI(刺激强度) 基于 MT,则应考虑在阈值估计和 TMS−EEG 协议中使用相同的 ISI (刺激间隔)和随机。
尽管 MT (运动阈值)是从 M1 测量的,它通常用于设定非运动区域的 SI(刺激强度),因为这种方法简单、快速(取决于确切的 MT 确定方法),并且可以用少至 17 个脉冲可靠地确定,提供了高度可重复的测量。该方法的局限在于假设非运动区域对 TMS 的敏感性与 M1 类似或相关。例如,Stewart 等人的研究对磷光阈值和 MT 进行了比较,似乎并非如此。此外,TMS–EEG 研究支持不同皮层区域对刺激的不同反应性 。独特的细胞构架特征可能会影响大脑区域对 TMS 的反应。此外,还必须考虑头皮到皮层的距离差异,以及因此线圈到皮层的距离;在计算皮层 E-场的导航系统中,这一点是自动完成的(见下文)。在 TMS 中,磁场随着距离平方减弱;因此,线圈到皮层的距离越远,皮层中的磁场和感应电场就越弱。由于线圈到皮层的距离在大脑区域/目标之间有所不同,挑战在于确定其他区域应使用的 MT 百分比,各研究实验室调整 TMS 强度的做法差异很大(关于考虑线圈-皮层距离的简单指标,见 [130])。
有些研究组通过目视观察肌肉抽搐来确定 TMS 阈值,而不是通过 EMG 记录运动反应。然而,这种方法通常会高估 MT,不适合用于可重复的测量 ,也不利于用户之间的方法标准化。目视观察肌肉抽搐可用于确保记录的 MEPs(运动诱发电位) 主要反映目标肌肉的活动。
磷光感知:在视觉区域中,SI (刺激强度)可以基于磷光阈值(PT)确定。磷光现象是幻觉感知,通常描述为在 TMS 脉冲后立即感知到的视觉闪光,被认为是由于视觉皮层 或投射到视觉皮层的视辐射纤维束的直接激活引起的。PT (磷光阈值)的计算方式与 MT 类似,但依赖于参与者的主观报告(他们被要求指出是否感知到磷光),而不是客观可测量的反应(即 MEPs)。由于视觉皮层的相关部分可能位于比初级运动皮层更深的区域,PT (磷光阈值)通常高于 MT(运动阈值)。另一个限制是,只有大约 60% 的参与者能够引发磷光,因此如果无法获得一致的磷光,MT 有时被用来设定 TMS 强度。
感应电场:确定 SI 的另一种方法是计算目标区域的感应电场,然后选择产生所需 E-场的 TMS 强度 。理论上,这种方法不依赖于线圈到皮层的距离 ,并且可以用于任何皮层区域。一个限制是该技术需要使用先进的神经导航系统和参与者的 MRI(见第 2.6 节),这可能并非总是可用。此外,在线 E-场计算目前仅在少数 TMS/导航系统中可用(其 E-场估算的底层算法未公开)。然而,考虑到受试者特定解剖结构的开源软件,可用于离线 E-场建模(例如,www.simnibs.org);现在在经颅电和磁刺激领域广泛使用。与精确的有限元计算器(如 SimNIBS)相比,商业在线 E-场估算器基于计算简化。例如,某种神经导航系统基于在适合局部受试者特定几何形状的球体内计算 E-场。不同系统之间的计算差异可能导致不同研究中 E-场估算的差异。因此,在线 E-场监测可能最有用的是在群体内规范化 TMS 剂量,并确保个体内的测试-重测可靠性。
最后,必须进一步研究 TMS 引发的 E-场与目标部位激活之间的关系。影响神经元兴奋性的因素(如轴突几何形状)可能会以难以根据先验信息预测的方式影响所需的 E-场,即我们不知道应施加何种强度和方向的 E-场来有效地刺激皮层。先前的研究表明,当刺激视觉皮层时:a)当 E-场强度低于 50 V/m 时,刺激后的活动与基线 EEG 活动无法区分(即无法引发 TEPs);b)TEP 振幅随着感应 E-场的强度逐渐增加;c)在 120 V/m 时,目标区域有实质性的激活,在相同强度下,不同刺激部位的 TEP 频率内容有明显差异 。重要的是,E-场估算并未考虑其他因素的可能影响,如 TMS 脉冲波形和持续时间,或具有特定强度的 E-场的空间范围,这些因素可能有助于感应激活的时空和空间总和,从而影响 TMS 脉冲引发皮层神经元动作电位的能力。
TEP (TMS 诱发电位)振幅:SI(刺激强度) 还可以通过搜索最大化 TEP 振幅的刺激参数来确定。类似于运动热点搜索,可以调整 TMS 的位置、方向和强度,以优化对下层神经回路的影响,同时最小化伪迹。这种方法依赖于在记录过程中实时视觉检查数据(rt-TEP 软件, [34])。首先,单次试验数据的可视化可以立即评估诱发的肌肉活动或其他 TMS 相关伪迹的存在;如果皮层目标不太靠近颅骨肌肉,通常通过小幅调整线圈方向和/或位置就足以减少这些伪迹对 EEG 信号的影响 。随后,可以通过测量在 TMS 后最初 50 毫秒内、最接近刺激部位的通道中获得的平均 TEPs(重新参考到平均参考)的峰峰值振幅(例如,20 次试验的平均值)来评估刺激的有效性。具体而言,预计 TMS 的 EEG 反应在以下情况下显示出更大的振幅:a)与远处通道相比,靠近刺激部位的通道;b)与较晚的延迟相比,较早的延迟;c)与对侧半球的通道相比,受刺激半球的通道。基于这些 TEP 特征,在最接近刺激部位的通道中测量的最初 50 毫秒内最大的峰峰值振幅代表了 TMS 对皮层影响的读数。通过将多个 EEG 通道组合成线性组合,可以进一步增强读数对感兴趣区域的敏感性,从而提高可靠性。
平均 20 次试验后 TMS 引发的早期和局部 EEG 反应的峰峰值振幅与在 80–100 次试验中平均的完整会话的信噪比相关,并取决于自发 EEG 的振幅和变异性(参见参考文献 [34] 中的补充结果)。尽管无法为理想的峰峰值振幅设定绝对值,但原则上可以根据要收集的试次数量和正在进行的 EEG 活动的振幅来估计一个合理的终点。
这种方法意味着实时评估并(如有需要)调整 TMS 参数(强度、部位、方向)的效果,以最小化肌肉伪迹并最大化初始皮层激活的强度;因此,为了提高数据质量,这可能意味着偏离精确的目标定位要求(例如,在刺激与某种假设功能或功能障碍相关的皮层部位时)。总之,依靠实验过程中实时的 EEG 读数可以对不期望的伪迹进行即时控制。当刺激靠近中线的皮层结构时,这种方法最为有效,因为可以通过小幅调整 TMS 参数来减少颅骨肌肉的激活,而当目标定位于更侧面的皮层区域时,挑战性会增加。
3.3. 引发大脑活动所需/最佳的 TMS 强度
刺激强度(SI)会影响是否只引发局部的 TEP 成分,还是通过胼胝体通路等激活更广泛的网络。多项研究描述了 TMS−EEG 反应的输入-输出特性,即它们如何随 SI 的变化而变化,结果大多表明在典型的 SI (刺激强度)下存在线性关系,至少在 M1 和前额皮层是如此(例如参考文献[45][148],但视觉区域的非线性强度–幅度关系见参考文献[138])。在其他情况下,SI 可以通过文献中已知的行为效应来定义,从而确保超过阈值的 SI。例如,在最近一系列关于额叶眼区(FEF)对后脑信号控制的 TMS−EEG 实验中,Veniero 等人使用了 65% 最大刺激器输出(MSO)的固定 SI(刺激强度),该强度基于先前的研究,显示正是这种强度有效地激活了 FEF 及其投射,这可以从对视觉注意任务和感知任务的行为 TMS 效应中推断出来。在 Veniero 等人的研究中,以此超过阈值的 SI(相对于行为效应)对 FEF (额叶眼区)进行 TMS,引发了枕叶部位的内在大脑振荡变化,即远程连接区域。除了超过阈值的 SI (刺激强度)外,还有证据表明,相对于 MT 的阈下 SI 也足以引发 TMS−EEG 反应,尽管可能仅限于局部水平。已有研究表明,以 60% MT 刺激左、右 M1 和前额皮层,足以引发可测量的大脑活动,在目标神经组织中约 40 V/m 的 E-场可能足以产生神经元兴奋。在 M1 区域,这种 E-场强度可以引发可见的 TMS−EEG 峰值,但这些 SI(刺激强度)(通常小于 50% MT)可能不足以激活整个运动网络。还有一些证据表明,兴奋阈值可能取决于神经元类型和局部神经回路(例如参考文献[13])。
关于激活胼胝体和其他远距离通路所需的 SI(如通过 TMS−EEG 检测到)的问题仍然悬而未决,这还将取决于所研究的人群(例如,与健康志愿者相比,重度抑郁症患者的大脑反应有所改变,参见参考文献[153])。
3.4. 线圈位置和方向的影响
众所周知,线圈的位置和方向会影响 MEPs(运动诱发电位)。这些参数也会影响 TEPs。然而,在 TEPs 中,这些影响尚未像在 MEPs 中那样被广泛研究,因为仅测试了少数线圈方向和位置的影响。不同的线圈方向会影响 TEP(经颅磁诱发电位) 的极性和幅度,尽管并非所有成分都受到同等程度的影响。在某些参与者中,略微改变热点附近的线圈位置会影响 TEP 的幅度,而在另一些人中,它也会影响 TEP 的波形。线圈方向还会影响大脑振荡,正如 Thut 等人 的研究所报道的,当线圈的方向诱发垂直于目标沟回的电流时,所引发的阿尔法振荡幅度最大。
3.5. 如何处理由周围神经结构共刺激引起的 EEG 反应
TMS 通常会引起体感和听觉感觉,因为它可能不仅激活皮层神经元,还会激活支配面部、下颌和颈部肌肉的神经。即使没有肌肉被激活,脉冲也会由于感觉神经(例如三叉神经)的兴奋或线圈振动对皮肤的机械刺激(例如敲击感)而引起头皮感觉。此外,脉冲放电时线圈导线会产生咔嗒声,可以通过空气和骨传导激活听觉通路。这些感觉输入可能会导致外周诱发的 EEG 反应,污染由直接皮层激活引起的经颅诱发 EEG 反应。外周诱发电位不仅可能污染经颅诱发的 EEG 反应,还可能通过神经生理相互作用调制它们。
最近,一些文章在 TMS–EEG 社区引发了激烈的讨论,关于 TMS 的 EEG 反应在多大程度上是由直接皮层刺激引起的,或者包含了与 TMS 相关的感觉输入所诱发的电位,引发了争论。因此,在 TMS–EEG 实验中,对使用对照和假刺激的关注度提高了。以下将讨论可用于控制外周诱发 EEG 反应的策略,具体取决于实验设计和研究目的。
已经提出了多种程序来处理伴随 TMS 脉冲施加的听觉刺激。一些策略假设 TMS 产生的活动与听觉激活的线性叠加。在这里,记录未使用掩蔽噪声的 TEPs,通过使用独立成分分析(ICA)方法,或者记录额外的听觉假刺激会话,数学上消除听觉诱发电位,或者至少将其与受污染的 TEPs 进行比较。另一种策略是通过播放连续的噪声来控制听觉刺激,以掩盖线圈的咔嗒声,例如白噪声、有色噪声,或者根据咔嗒声本身的频谱特性并基于参与者的感知实时定制的噪声。最近,Russo 等人 开发并分享了一种工具,可以轻松地使用任何类型的线圈和刺激器实现后者的解决方案,并在时间和频率域中操纵标准噪声。重要的是,使用该工具和生成的定制噪声已被证明在较低的音量强度下(通过声压级测量量化)比标准噪声更有效。需要注意的是,噪声掩蔽可能会引入功能性静息态大脑连接的变化,类似于 fMRI 扫描仪噪声引起的效果。这种“脑状态”的变化可能会改变大脑对 TMS 的反应性。
尽管有合理的证据表明,在某些实验条件下,空气传导的听觉诱发反应可以通过掩蔽噪声来抑制,但 TMS 的咔嗒声仍可能通过骨传导引发听觉反应。此外,正如一些认知研究所建议的那样,体感诱发电位(SEP)可能会被白噪声调制。需要进行研究以系统地评估同时暴露于噪声是否或如何影响 TEPs。与其使用额外的噪声来掩盖线圈咔嗒声,不如尽可能减少刺激线圈的咔嗒声。最近,通过将绕组连接到由空气间隙分隔的周围阻尼外壳,开发了一种显着降低噪音的 TMS 线圈[165]。线圈咔嗒声的噪音降低了 18–41 dB。然而,该线圈尚未在 TMS−EEG 实验中进行测试。
除了掩蔽或最小化听觉和体感共刺激的努力外,几个研究组使用了“真实的假刺激”来复制线圈咔嗒声和真实磁刺激的感觉,而不显着刺激脑组织。然而,在 TMS 文献中,建立有效的假刺激程序是一个长期存在的问题,仍然存在困难。在 TMS–EEG 实验中,已经探索的一种选择是结合 TMS 和皮肤电刺激。使用 TMS 线圈来再现咔嗒声,而将附着在头皮或线圈本身的电极用于施加电刺激,旨在模拟与真实 TMS 相关的体感输入。尽管为开发逼真的多感官假刺激付出了所有努力,但报告的程序中没有一个能够完美匹配真实 TMS 的外周共刺激(例如,参考文献[38][167])。这主要是因为 TMS 和电刺激相关的体感感知在质量上是不同的,参与者可以区分它们。
处理虚假激活的另一种方法是实施比较策略,正如在 fMRI 实验中通常所做的那样,以便隔离感兴趣的效应。如果研究旨在评估实验操纵(例如学习)的效果,前后测试设计具有在不同时间点测试同一参与者的优势,即在干预前后,使用相同的 TMS 参数。同样,旨在测试 TEPs 任务依赖性调制的研究可以包括在不同任务条件下使用相同 TMS 参数的记录。如果是这样,感觉刺激将在各个时间点或条件下保持相同,EEG 的差异可以归因于直接的皮层刺激,前提是实验操纵不会改变对感觉输入的处理。这一策略已在多个 TMS–EEG 研究中使用(例如,参考文献[170-174])。“比较策略”假设干预协议不会改变 TMS 引发的外周诱发 EEG 反应。尽管情况可能并非总是如此,但在需要研究问题和协议时应加以控制。参与者可能会对外周共刺激产生习惯化或敏化,在 TMS–EEG 实验中引入外周诱发 EEG 反应的顺序效应。干预本身可能直接调制外周诱发的 EEG 反应,或者通过改变外周共刺激对 TEP 的唤醒或注意力效应间接调制。
类似的比较策略已应用于旨在表征大脑区域在不同状态或任务期间的兴奋性和连接性的研究中。在这种情况下,实验设计应包括可以比较以回答研究问题的条件。很少有研究在认知任务期间使用 TMS–EEG,但在这种情况下,保持刺激参数不变的同时进行对照任务将确保相同的感觉刺激。作为一个例子,Morishima 等人在面孔辨别任务中追踪了 FEF(额叶眼区) 的连接性,并将其与在运动辨别任务中获得的相同测量进行比较(注意,面孔和移动点是同时呈现的)。另一种方法包括在与感兴趣事件(例如,运动开始、视觉刺激)不同的时间间隔施加 TMS 脉冲。比较在不同“任务”、“任务时期”或“状态”下引发的 TEPs 仍可能受到周围共刺激引起的中枢处理的任务特异性、时期特异性或状态特异性调制的影响(例如,导致门控或注意力转移)。
在没有 EEG 的 TMS 研究中,经常使用对照部位来控制非特异性效应并建立部位特异性。然而,刺激不同的部位可能会引起不同的头皮感觉和肌肉激活。其他人探索了在同一部位应用 TMS 对照的可能性,但将线圈方向从更有效的方向(感应电场垂直于目标沟回)改变为较不有效的方向(感应电场平行沟回。这应使各条件下的外周激活(例如来自声音)保持相似,尽管由于两种线圈方向激活了不同的肌肉纤维,无法排除体感差异。
因此,已经探索了许多方法,但尚未就最佳方法达成共识。在设计研究时,考虑由周围结构共刺激引起的 EEG 反应,并应用最符合研究目的的解决方案非常重要。
3.6. 基于 EEG 特征触发 TMS:“开环和闭环”
静息状态的 TMS−EEG 可以提供关于皮层一般兴奋性状态或连接性的有价值信息。然而,关于特定大脑现象(如皮层振荡)的因果作用所获得的信息是有限的,因为没有明显的方法来控制这些活动。基于当前的大脑状态触发 TMS 可以直接探测不同皮层功能的作用。在讨论大脑状态依赖与非依赖,以及闭环与开环 TMS 时,术语上存在一些混淆(最近的讨论见参考文献 [177^)。基于特定 EEG 特征(例如特定频段的振荡相位和幅度)实时触发 TMS,与大脑状态非依赖的 TMS 相比,允许进行大脑状态依赖的 TMS。后者是指通过某个预定义的序列应用 TMS(例如,具有特定的 ISI ± 一些抖动),因此忽略了当前的大脑状态。除了大脑状态依赖的刺激外,闭环操作要求系统的特定参数被持续监测,并相应地调整 TMS 参数(控制信号,例如 TMS 的强度和时序),以实现、维持或改变所监测的参数(例如,旨在达到特定类型的大脑状态)。闭环的主要例子是温控器,它测量温度并调整热水流向散热器以达到并维持预设的温度值。然而,如果控制信号不改变所监测的参数(例如,如果 TMS 不改变所监测的大脑状态),并且这种变化不反馈到刺激参数上,回路仍然是开环的[178]。因此,到目前为止发表的所有研究充其量代表了开环的大脑状态依赖的 TMS−EEG,因为 TMS 相关的 EEG 伪迹和外周共刺激引发/诱发的反应目前仍然阻碍了实时的连续 EEG 监测。
开环实时方法是指在预定义的大脑状态(例如,相位)下向大脑施加 TMS 脉冲,这意味着所诱发的大脑反应(例如,TEPs)不影响下一次 TMS 脉冲的特征。本质上,大脑状态被用来指导 TMS,根据预先决定的参数进行刺激,允许在特定条件下改进对大脑反应的测试。另一种方法是定义闭环,这意味着通过 TMS 控制大脑状态,使 TMS 引发的反应保持在预定义的范围内。在这种情况下,诱发的大脑反应通过反馈回路提供调整 TMS 参数的反馈。
在此背景下,EEG−TMS(即由 EEG 引导的 TMS)可用于表征内源性振荡的生理学,无论是在相位依赖的兴奋性(例如,感觉运动 μ 节律的哪个相位对应于最大皮质脊髓兴奋性),还是相位依赖的可塑性。这种 EEG 触发的 TMS 协议的前景不仅在于可以在刺激部位实现更强和更可靠的可塑性反应,而且在于当刺激与基于 EEG 的大脑连接状态同步时,可以调节特定的神经通路。
在信号处理方面,尽管刺激前的 EEG 时段不受 TMS 伪迹的影响,但平均化不能以相同的方式用于去除随机噪声。由于每个试验都必须单独考虑,信号质量问题(基线波动、眨眼、目标振荡的低幅度时期等)至关重要。特别是,在 DC 模式下记录时,由先前的 TMS 脉冲引起的缓慢漂移可能会成为问题;这需要在准备和在线信号处理流程中加以考虑。
当使用振荡性大脑活动作为触发 TMS 的“状态标记”时,状态效应将关键地取决于用于捕获正在进行的振荡活动的方法。由于 EEG 的空间分辨率有限,传感器水平的振荡活动可能反映来自不同皮层区域的活动混合,而不是在 TMS 目标皮层局部生成的。
小结:
本文由全球TMS–EEG专家组成的小组共同编撰,涵盖了TMS–EEG实验中应考虑的所有方面,由于篇幅有限,本次仅列举了全文的上半部分,涵盖:TMS–EEG 的电生理学方面的原理, TMS–EEG 仪器设备介绍与建议,试次的确定,刺激阈值与强度,线圈位置和方向,如何处理由周围神经结构共刺激引起的 EEG 反应以及基于 EEG 特征触发 TMS:“开环和闭环”。