声音序列处理相关文献

第一篇:深度学习在音频信号处理领域的进展

  1. 项目目标

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rGDeChMm-1607541364016)(C:\Users\李思颖\AppData\Roaming\Typora\typora-user-images\image-0201208153752406.png)]

预测一个全局的单标签的任务——序列分类

党目标为多个类别的集合的时候——多标签序列分类

当目标是一个连续的数值的时候——序列回归


  1. 声音特征

    传统的方法:MFCC

    1) 使用FFT提取幅度谱

    2)应用Mel滤波进行Mel频域的转化

    3)使用log进行非线性变化

    4)使用DCT进行系数特征的提取。————> DCT会损失声音结构,目前普遍使用的是log-mel spectrogram。

    但是这些都是人工设计的固定滤波器,(滤波器:对声音进行不同的权重加成,而这些权重完全可以由神经网络来学习)——————> 直接使用神经网络来对声音序列进行学习。


  2. 声音模型

    MLP,CNN,RNN,LSTM等

    MLP: 输入一维的系数向量 比如展平的MFCC 。MLP每次学习都是针对全局的特征

    CNN : 一维声音序列<-> 1-DNN进行学习

    ​ 二维频谱图<-> 2-DNN进行学习

    ​ 局部特征提取,学习局部特征的关联性,比如相邻帧的关系,相邻特征(频率维度)的关系。

    ​ 参数量小,模型复杂程度低。

    RNN: 对时间上具有相关性较强的序列数据有很好的效果。

    ​ 缺点:速度慢,加上会出现梯度消失的问题。

    CNN和RNN会结合起来使用,先通过CNN来进行高维特征的提取,然后再使用RNN对时间相关性进行建模。


  3. 数据

    训练集:本次项目的训练集项目直接给了

    两种数据增强的办法:

    1)迁移学习:

    ​ 指的是再大数据集上先进行模型预训练,然后再在目标领域进行微调。

    2)数据增强或者数据生成

    数据增强是指对现有数据进行参数化的调整从而生成新的数据,典型的数据增强的方法是Time Stretch和Pitch Shift

  4. 应用

    环境音的识别

    1)声音场景的识别

    将某一段音频预测为某一个声音类别。经典分类任务。

    2)声音事件的检测

    一段声音流某一类或者某几类声音在时间维度上的起始点与终止点。

    3)声音事件的标注

    给你一段声音,让你判断这段声音包含哪些声音类别,这些判断可能会包含更加细粒度的分类。


总结:

我们的项目属于声音事件的标注类型。

问题:1)项目目标方面,我们是属于全局但标签的分类任务嘛?

2)我们具体采用什么办法去提取训练声音特征?

3)我们采用什么样的模型去做这个项目?

4)我们是需要把混合音频分离出来再去分类还是可以直接进行分类呢?

第二篇:机器学习中的音频特征:理解Mel频谱图

  1. 随时间采集了气压样本,以数字方式表示音频信号

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7WM7dCPY-1607541364021)(C:\Users\李思颖\AppData\Roaming\Typora\typora-user-images\image-20201208163455976.png)]

  2. 使用快速傅里叶变换将音频信号从时域映射到频域,并在音频信号的重叠窗口部分执行此操作。

  3. 将y轴(频率)转换为对数刻度,将颜色尺寸(幅度)转换为分贝,以形成频谱图。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5fyKV8Yk-1607541364025)(C:\Users\李思颖\AppData\Roaming\Typora\typora-user-images\image-20201208163541731.png)]

  4. 将y轴(频率)映射到mel刻度上以形成mel频谱图。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-B4i9UJUh-1607541364029)(C:\Users\李思颖\AppData\Roaming\Typora\typora-user-images\image-20201208163606124.png)]

第三篇:如何利用深度学习进行语音识别

来源:如何利用深度学习进行语音识别

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bhQN6X5D-1607541364032)(C:\Users\李思颖\AppData\Roaming\Typora\typora-user-images\image-20201209160459267.png)]

声音的处理:

  1. 将声波转化为比特。

​ 声波是一维的,它再每个时刻有基于高度的值。通过记录等距时间声音的高度来记录。即采样的过程。这样你可以得到一个**.wav音频**文件。

​ 语音识别一般是16khz(每秒16000个采样)。下面是前100个采样的例子:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4R3vfYex-1607541364034)(C:\Users\李思颖\AppData\Roaming\Typora\typora-user-images\image-20201209160937054.png)]

采样定理(Nyquist theorem),我们知道我们可以利用数学,从间隔的采样中完美重建原始声波——只要我们的采样频率比期望得到的最高频率快至少两倍就行。

  1. 对.wav文件进行划分。然后为各个频段的声波建立指纹

    划成为20ms的音频块(320个采样)但这样的音频,仍然是不同频率的声音组合在一起,包含中低高音。通过傅里叶变换将复杂的声波分解成一个个部分(按照频率的低中高音)。将每个频段的能量相加,然后为各个类别的频段创建对应的指纹。

    结果就是从低音(低音音符)到高音,每个频率的重要程度。以每50个hz为一个频段的话,我们上面20ms的音频所含有的能量从低频到高频就可以表示为下面的这个列表:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ALFFThv5-1607541364036)(C:\Users\李思颖\AppData\Roaming\Typora\typora-user-images\image-20201209161941378.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-smgNmudg-1607541364038)(C:\Users\李思颖\AppData\Roaming\Typora\typora-user-images\image-20201209161959885.png)]

  1. 如果对每个20ms的音频块都重复上面的这个过程,最后就会得到一个频谱图(从左到右每一个都是29ms的音频块)

    这就是我们实际输入到神经网络中的数据

在这里插入图片描述

第四篇:LSTM模型结构的可视化

]

  1. 如果对每个20ms的音频块都重复上面的这个过程,最后就会得到一个频谱图(从左到右每一个都是29ms的音频块)

    这就是我们实际输入到神经网络中的数据

w

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值