给定一个整数数组 prices
,其中 prices[i]
表示第 i
天的股票价格 ;整数 fee
代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例 2:
输入:prices = [1,3,7,5,10,3], fee = 3
输出:6
提示:
1 <= prices.length <= 5 * 104
1 <= prices[i] < 5 * 104
0 <= fee < 5 * 104
我们可以用一个数组 dp
来记录当前持有股票和不持有股票的最大利润。其中,
dp[i][0]
表示第 i 天不持有股票的最大利润,
dp[i][1]
表示第 i 天持有股票的最大利润。
对于 dp[i][0]
,我们可以在第 i-1
天卖出股票或者不进行任何操作。因此,我们可以得到如下状态转移方程:
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee)
对于 dp[i][1]
,我们可以在第 i-1
天买入股票或者不进行任何操作。因此,我们可以得到如下状态转移方程:
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i])
最终的答案即为 dp[-1][0]
。
整体代码如下:
class Solution:
def maxProfit(self, prices: List[int], fee: int) -> int:
dp = [ [0] * 2 for _ in range(len(prices)) ]
dp[0][1] = -prices[0]
for i in range(1, len(prices)):
'''
0:未持有
1:持有
'''
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee)
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i])
return dp[-1][0]