每日一题之买卖股票的最佳时机含手续费

给定一个整数数组prices表示每天的股票价格,和一个手续费fee,目标是计算在无限交易次数下,但每次交易需支付手续费的情况下,能获得的最大利润。使用动态规划,通过dp数组记录持有和不持有股票的状态,得出状态转移方程,最终返回dp数组中最后一天不持有股票时的最大利润。
摘要由CSDN通过智能技术生成

题目链接

给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

示例 2:

输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

提示:

  • 1 <= prices.length <= 5 * 104
  • 1 <= prices[i] < 5 * 104
  • 0 <= fee < 5 * 104

我们可以用一个数组 dp 来记录当前持有股票和不持有股票的最大利润。其中,

dp[i][0] 表示第 i 天不持有股票的最大利润,

dp[i][1]表示第 i 天持有股票的最大利润。

对于 dp[i][0],我们可以在第 i-1 天卖出股票或者不进行任何操作。因此,我们可以得到如下状态转移方程:

dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee)

对于 dp[i][1],我们可以在第 i-1 天买入股票或者不进行任何操作。因此,我们可以得到如下状态转移方程:

dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i])

最终的答案即为 dp[-1][0]

整体代码如下:

class Solution:
    def maxProfit(self, prices: List[int], fee: int) -> int:
        dp = [ [0] * 2 for _ in range(len(prices)) ]
        dp[0][1] = -prices[0]

        for i in range(1, len(prices)):
            '''
            0:未持有
            1:持有
            '''

            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee)
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i])

        return dp[-1][0]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值