一. 图像特征匹配
最近刚入门了计算机视觉这门课程,觉得非常有意思,想象一下如果你能够自己做出一款全景拍照的软件,真实地令人激动,当然这全景图像其中的原理就是图像的特征匹配,把不同的图片通过相同的局部特征进行拼接,一张拼一张,最后进行一些平衡化处理后就可以得到全景图了。接下来我们就了解一下这其中的部分原理。
图像的局部特征主要分为以下几类:
- 角点。Harris算子,SUSAN算子, FAST算子。
- 梯度特征点。 SIFT、SURF、GLOH、ASIFT、PSIFT算子 等。
- 边缘特征(线型)。Canny算子, Marr算子。
- 纹理特征。灰度共生矩阵,小波Gabor算子。
今天我们要介绍的就是Harris角点检测和特征匹配。
二. Harris角点检测
2.1 何为角点
通常意义上来说,角点就是极值点,即在某方面属性特别突出的点,是在某些属性上强度最大或者最小的孤立点、线段的终点。而对于图像而言,如图所示红点部分,即为图像的角点,其是物体轮廓线的连接点。
那么对于图像的角点判断,我们假想出一个正方形的小窗口,如果小窗口在图像以任意方向进行移动,导致图像灰度的明显变化,那么我们就可以认为小窗口内部包含了“角点”,或者当窗口足够小时,可以认为该窗口就是角点。下面我们通过一组图来了解一下:
可以看到:
当窗口位于平坦区时,任意方向移动都没有灰度变化。
当窗口位于边缘区时,沿边缘方向移动无灰度变化。
当窗口位于角点时,沿任意方向移动都会有明显的灰度变化。
2.2. 如何检测角点—Harris算法
知道的角点的概念与逻辑判断,那如何转化成计算机能够识别的工具?
人的视觉是具有先天敏感性的,我们可以一眼判断出图像中的所有角点,可以当电脑要识别图像的时候,它们