学习笔记 2.1 — Harris角点检测与特征匹配【含实例】

一. 图像特征匹配

最近刚入门了计算机视觉这门课程,觉得非常有意思,想象一下如果你能够自己做出一款全景拍照的软件,真实地令人激动,当然这全景图像其中的原理就是图像的特征匹配,把不同的图片通过相同的局部特征进行拼接,一张拼一张,最后进行一些平衡化处理后就可以得到全景图了。接下来我们就了解一下这其中的部分原理。

图像的局部特征主要分为以下几类:

  • 角点。Harris算子,SUSAN算子, FAST算子。
  • 梯度特征点。 SIFT、SURF、GLOH、ASIFT、PSIFT算子 等。
  • 边缘特征(线型)。Canny算子, Marr算子。
  • 纹理特征。灰度共生矩阵,小波Gabor算子。

今天我们要介绍的就是Harris角点检测和特征匹配。

二. Harris角点检测

2.1 何为角点

通常意义上来说,角点就是极值点,即在某方面属性特别突出的点,是在某些属性上强度最大或者最小的孤立点、线段的终点。而对于图像而言,如图所示红点部分,即为图像的角点,其是物体轮廓线的连接点。

Alt

那么对于图像的角点判断,我们假想出一个正方形的小窗口,如果小窗口在图像以任意方向进行移动,导致图像灰度的明显变化,那么我们就可以认为小窗口内部包含了“角点”,或者当窗口足够小时,可以认为该窗口就是角点。下面我们通过一组图来了解一下:

可以看到:
当窗口位于平坦区时,任意方向移动都没有灰度变化。
当窗口位于边缘区时,沿边缘方向移动无灰度变化。
当窗口位于角点时,沿任意方向移动都会有明显的灰度变化。

2.2. 如何检测角点—Harris算法

知道的角点的概念与逻辑判断,那如何转化成计算机能够识别的工具?
人的视觉是具有先天敏感性的,我们可以一眼判断出图像中的所有角点,可以当电脑要识别图像的时候,它们

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值