【最新数理统计复习笔记】

第一章 概率论基础

在这里插入图片描述

第二章 统计基础

  • 常用抽样分布: χ 2 , T , F \chi^2, T, F χ2,T,F
    1. χ 1 − α 2 = − χ α 2 , T 1 = α = − T α \chi^2_{1-\alpha} = -\chi^2_{\alpha}, T_{1=\alpha} = -T_{\alpha} χ1α2=χα2,T1=α=Tα
    2. F 1 − α ( n , m ) = 1 F α ( n , m ) = F α ( m , n ) \displaystyle F_{1-\alpha}(n, m) = {1 \over F_{\alpha}(n, m)} = F_{\alpha}(m, n) F1α(n,m)=Fα(n,m)1=Fα(m,n)
  • 正态总体的抽样分布
    1. X ‾ ∼ N ( μ , σ 2 n ) \displaystyle \overline X \thicksim N(\mu, {\sigma^2 \over n}) XN(μ,nσ2)
    2. X ‾ − μ S / n ∼ t ( n − 1 ) \displaystyle {\overline X - \mu \over S/\sqrt{n}} \thicksim t(n-1) S/n Xμt(n1)
    3. ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \displaystyle {(n-1)S^2 \over \sigma^2} \thicksim \chi^2(n-1) σ2(n1)S2χ2(n1)
  • 次序统计量
    1. 单个
    2. 多个
  • 充分统计量(利用因子分解定理求) f ( x , θ ) = g ( t , θ ) h ( x ) f(x, \theta) = g(t, \theta) h(x) f(x,θ)=g(t,θ)h(x) 参考知乎讲解
    1. 求联合密度函数
    2. 因子分解:
      1. x x x θ \theta θ都有有关的放第一项
      2. 只与 x x x 有关的放第二项
      3. 第一项里找出只与 x x x 有关部分为 T T T

第三章 点估计及其优良性

  • 点估计
    • 矩估计 —— E ( X i ) = ∑ X j i E(X^i) = \sum X_j^i E(Xi)=Xji
    • 极大似然估计
      1. 求似然函数 L ( θ ) = ∏ p ( x i ; θ ) L(\theta) = \prod p(x_i; \theta) L(θ)=p(xi;θ) —— 目标最大化似然函数
      2. l n L ( θ ) ln L(\theta) lnL(θ)
      3. 求导为 0 → 0 \to 0 解得 θ \theta θ
    • 极大似然估计特殊情况 θ 的 取 值 范 围 与 X 有 关 \theta 的取值范围与 X 有关 θX
      1. 如 θ < X → θ < X ( 0 ) 如 \theta < X \to \theta < X_{(0)} θ<Xθ<X(0)
  • 点估计优良性
    1. 无偏性: E ( θ ^ ) = θ E(\hat \theta) = \theta E(θ^)=θ
    2. 有效性:(判断估计是否有效)判断 V a r ( θ ) ? = C R 下 界 Var(\theta) ?= CR下界 Var(θ)?=CR
      1. 计算方差 V a r ( θ ^ ) Var(\hat \theta) Var(θ^)
      2. 计算 C − R C-R CR 下界 1 n I ( θ ) \displaystyle{1 \over n I(\theta)} nI(θ)1
        1. 费希尔信息量: I ( θ ) = E [ d ( l n p ( X ; θ ) / d θ ) 2 ] I(\theta) = E[ d (ln p(X; \theta) / d\theta)^2] I(θ)=E[d(lnp(X;θ)/dθ)2]
        2. 或者 I ( θ ) = − E [ d 2 l n p ( X ; θ ) d θ 2 ] \displaystyle I(\theta) = - E[{d^2 ln p(X; \theta) \over d\theta^2}] I(θ)=E[dθ2d2lnp(X;θ)]
      3. 判断 V a r ( θ ^ ) = 1 / n I ( θ ) Var(\hat \theta) = 1 / n I(\theta) Var(θ^)=1/nI(θ)

第五章 区间估计与假设检验

  • 枢轴变量法 区间估计
    1. 先求出 θ \theta θ的点估计 θ ^ \hat \theta θ^
    2. 通过 θ ^ \hat \theta θ^构造枢轴函数 G ( θ ^ , θ ) G(\hat \theta, \theta) G(θ^,θ)
      • G G G中除了 θ \theta θ外不含其他未知参数
    3. P ( a < G ( θ ^ , θ ) < b ) > = 1 − α P(a < G(\hat \theta, \theta) < b) >= 1-\alpha P(a<G(θ^,θ)<b)>=1α
      • a , b a, b a,b 可通过查表获得
  • 假设检验
    1. 提出假设 H 0 , H 1 H_0, H_1 H0,H1
      • 通常假设 H 0 H_0 H0 为总体参数 θ = x x x \theta = xxx θ=xxx
    2. 确定检验统计量
    3. 通过拒绝域判断原假设是否成立

第六章 回归分析

  • S S T = S S R + S S E SS_T = SS_R + SS_E SST=SSR+SSE
    1. 离差平方和 S S T = ∑ y i 2 − n ( y ‾ ) 2 = l y y SS_T = \sum y_i^2 - n(\overline y)^2 = l_{yy} SST=yi2n(y)2=lyy
    2. 回归平方和 S S R = ∑ ( y ^ i − y ‾ ) 2 = β ^ 1 2 l x x SS_R = \sum (\hat y_i - \overline y)^2 = \hat \beta_1^2 l_{xx} SSR=(y^iy)2=β^12lxx
    3. 残差平方和 S S E = ∑ ( y i − y ^ i ) 2 = S S T − S S R SS_E = \sum (y_i - \hat y_i)^2 = SS_T - SS_R SSE=(yiy^i)2=SSTSSR
  • 简单线性回归(最小二乘法, 极大似然估计) y = β 0 + β 1 x + σ y = \beta_0 + \beta_1x + \sigma y=β0+β1x+σ
    • β ^ 0 = y ‾ − β ^ 1 x ‾ \hat \beta_0 = \overline y - \hat \beta_1 \overline x β^0=yβ^1x
    • β ^ 1 = l x y / l x x \hat \beta_1 = l_{xy}/l_{xx} β^1=lxy/lxx
      1. l x y = ∑ x i 2 − n x ‾ y ‾ l_{xy} = \sum x_i^2 - n \overline x \overline y lxy=xi2nxy
      2. l x x = ∑ x i 2 − n ( x ‾ ) 2 l_{xx} = \sum x_i^2 - n(\overline x)^2 lxx=xi2n(x)2
    • σ ^ = S S E n − 2 \displaystyle \hat \sigma = {SSE \over n-2} σ^=n2SSE
  • 参数的估计,$\beta_0, \beta_1 $的置信区间和假设检验
    1. β ^ 1 ∼ N ( β 1 , σ 2 l x x ) \displaystyle \hat \beta_1 \thicksim N(\beta_1, {\sigma^2 \over l_{xx}}) β^1N(β1,lxxσ2)
    2. β ^ 0 ∼ N ( β 0 , ( 1 n + x ‾ 2 l x x ) σ 2 ) \displaystyle \hat \beta_0\thicksim N(\beta_0, ({1 \over n} + { {\overline x}^2 \over l_{xx}})\sigma^2) β^0N(β0,(n1+lxxx2)σ2)
    3. ( n − 2 ) σ ^ 2 σ 2 = S S e σ 2 ∼ X 2 ( n − 2 ) \displaystyle {(n-2){\hat \sigma}^2 \over \sigma^2} = {SSe \over \sigma^2 } \thicksim X^2(n-2) σ2(n2)σ^2=σ2SSeX2(n2)
    4. β 1 = 0 时 , S S r σ 2 = β 1 2 l x x σ 2 ∼ X 2 ( 1 ) \displaystyle \beta_1=0时, {SSr \over \sigma^2} = {\beta_1^2l_{xx} \over \sigma^2} \thicksim X^2(1) β1=0,σ2SSr=σ2β12lxxX2(1)
    5. S S R / ( 1 ) S S E / ( n − 2 ) ∼ F ( 1 , n − 2 ) \displaystyle {SS_R/(1) \over SS_E/(n-2)} \thicksim F(1, n-2) SSE/(n2)SSR/(1)F(1,n2)
  • 回归方程的显著性检验 ~ 检验 β 1 \beta_1 β1是否为0
    1. H 0 : β 1 = 0 , H 1 : β 1 ! = 0 H_0: \beta_1=0, H_1: \beta_1 != 0 H0:β1=0,H1:β1!=0
    2. S S e σ 2 = ( n − 2 ) σ ^ 2 σ 2 ∼ χ 2 ( n − 2 ) \displaystyle {SS_e \over \sigma^2} = {(n-2)\hat \sigma^2 \over \sigma^2} \thicksim \chi^2(n-2) σ2SSe=σ2(n2)σ^2χ2(n2)
    3. S S r σ 2 ∼ χ 2 ( 1 ) \displaystyle {SS_r \over \sigma^2} \thicksim \chi^2(1) σ2SSrχ2(1)
  • F F F检验
    1. 提出 H 0 : β 1 = 0 , H 1 : β 1 ! = 0 H_0: \beta_1=0, H_1: \beta_1 != 0 H0:β1=0,H1:β1!=0
    2. 检验统计量 F = S S r / 1 S S e / ( n − 2 ) ∼ F ( 1 , n − 2 ) \displaystyle F = {SS_r / 1 \over SS_e / (n-2)} \thicksim F(1, n-2) F=SSe/(n2)SSr/1F(1,n2)
    3. 代入数据求$ F$, 查表求 F α ( 1 , n − 2 ) F_\alpha(1, n-2) Fα(1,n2)
    4. 比较大小,若 F F F 大则拒绝 H 0 H_0 H0, 效果显著
  • T T T检验
  • 点预测和区间预测
    1. 点预测直接带入 y ^ 0 = β ^ 0 + β ^ 1 x 0 \hat y_0 = \hat \beta_0 + \hat \beta_1 x_0 y^0=β^0+β^1x0
    2. 区间预测 : 直接用 y 0 ∼ N ( y ^ 0 , σ ^ 2 ) y_0 \thicksim N(\hat y_0, \hat\sigma^2) y0N(y^0,σ^2)
    3. y 0 → y ^ 0 ± z α / a σ ^ y_0 \to \hat y_0 \pm z_{\alpha/a} \hat\sigma y0y^0±zα/aσ^
  • 控制在这里插入图片描述
  • 样本相关系数 r x y = l x y l x x l x y \displaystyle r_{xy} = {l_{xy} \over \sqrt{l_{xx}l_{xy}}} rxy=lxxlxy lxy
  • C o v ( β ^ 0 , β ^ 1 ) = C o v ( y ˉ − β ^ 1 x ˉ , β ^ 1 ) = − x ˉ V a r ( β ^ 1 ) Cov(\hat\beta_0, \hat\beta_1) = Cov(\bar y - \hat\beta_1 \bar x, \hat\beta_1) = -\bar x Var(\hat\beta_1) Cov(β^0,β^1)=Cov(yˉβ^1xˉ,β^1)=xˉVar(β^1)
  • 注:
    1. 区间预测
      1. y 0 ∼ N ( β 0 + β 1 x 0 , σ 2 ) y_0 \thicksim N(\beta_0+\beta_1x_0, \sigma^2) y0N(β0+β1x0,σ2)
      2. y ^ 0 ∼ N ( β 0 + β 1 x 0 , ( 1 n + ( x 0 − x ˉ ) 2 l x x ) σ 2 \displaystyle \hat y_0 \thicksim N(\beta_0+\beta_1x_0, ({1 \over n}+{(x_0-\bar x)^2 \over l_{xx}})\sigma^2 y^0N(β0+β1x0,(n1+lxx(x0xˉ)2)σ2
      3. y 0 − y ^ 0 ∼ N ( 0 , ( 1 + 1 n + ( x 0 − x ˉ ) 2 l x x ) σ 2 ) \displaystyle y_0-\hat y_0 \thicksim N(0, (1 + {1 \over n}+{(x_0-\bar x)^2 \over l_{xx}})\sigma^2) y0y^0N(0,(1+n1+lxx(x0xˉ)2)σ2)
      4. ( n − 2 ) σ ^ 2 σ 2 = S S E σ 2 ∼ χ 2 ( n − 2 ) \displaystyle {(n-2) \hat \sigma^2 \over \sigma^2} = {SS_E \over \sigma^2} \thicksim \chi^2(n-2) σ2(n2)σ^2=σ2SSEχ2(n2)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值