数理统计 笔记

1.马尔科夫不等式

E ( x ) = ∫ − ∞ ∞ x f ( x ) d x = ∫ − ∞ ε x f ( x ) d x + ∫ ε ∞ x f ( x ) d x ≥ ∫ ε ∞ x f ( x ) d x ≥ ∫ ε ∞ ε f ( x ) d x = ε P { X ≥ ε } \begin{aligned} E(x)&=\int_{-\infty}^\infty xf(x)dx=\int_{-\infty}^\varepsilon xf(x)dx+\int_{\varepsilon}^\infty xf(x)dx\\ &\geq\int_{\varepsilon}^\infty xf(x)dx \geq\int_{\varepsilon}^\infty \varepsilon f(x)dx = \varepsilon P\{ X\ge\varepsilon \} \end{aligned} E(x)=xf(x)dx=εxf(x)dx+εxf(x)dxεxf(x)dxεεf(x)dx=εP{Xε} P { X ≥ ε } ≤ E ( x ) ε P\{ X\ge\varepsilon \} \leq \dfrac{E(x)}{\varepsilon} P{Xε}εE(x)

2.切比雪夫不等式

P { ∣ X − E ( X ) ∣ ≥ ε } = P { [ X − E ( X ) ] 2 ≥ ε 2 } ≤ [ X − E ( X ) ] 2 ε 2 = D ( x ) ε 2 = σ 2 ε 2 P { ∣ X − E ( X ) ∣ ≥ ε } ≤ σ 2 ε 2    ⟹    P { ∣ X − E ( X ) ∣ < ε } ≥ 1 − σ 2 ε 2 (马尔科夫不等式) \begin{aligned} P\{|X-E(X)|\ge\varepsilon\} &=P\{[X-E(X)]^{2}\ge\varepsilon^{2}\} \\ \tag{马尔科夫不等式} &\leq\dfrac{[X-E(X)]^{2}}{\varepsilon^{2}} \\ &=\dfrac{D(x)}{\varepsilon^{2}} \\ &=\dfrac{\sigma^{2}}{\varepsilon^{2}} \\ P\{|X-E(X)|\ge\varepsilon\}&\leq\dfrac{\sigma^{2}}{\varepsilon^{2}}\implies \\P\{|X-E(X)|<\varepsilon\}&\geq1-\dfrac{\sigma^{2}}{\varepsilon^{2}} \end{aligned} P{XE(X)ε}P{XE(X)ε}P{XE(X)<ε}=P{[XE(X)]2ε2}ε2[XE(X)]2=ε2D(x)=ε2σ2ε2σ21ε2σ2()

3.切比雪夫大数定理

任 意 σ > 0 , lim ⁡ n → ∞ P { ∣ X ˉ − μ ∣ < ε } = 1 任意\sigma>0,\lim_{n \to \infty}P\{|\bar{X}-\mu|<\varepsilon\}=1 σ>0,nlimP{Xˉμ<ε}=1 证 明 : E ( X ˉ ) = E ( 1 n ∑ i = 1 n X i ) = 1 n ∑ i = 1 n E ( X i ) = 1 n ∗ n μ = μ 证明:\\ E(\bar{X})=E({1 \over n}\displaystyle\sum_{i=1}^nX_i)={1 \over n}\displaystyle\sum_{i=1}^nE(X_i)={1 \over n}*n\mu=\mu :E(Xˉ)=E(n1i=1nXi)=n1i=1nE(Xi)=n1nμ=μ D ( X ˉ ) = D ( 1 n ∑ i = 1 n X i ) = ( 1 n ) 2 ∑ i = 1 n E ( X i ) = 1 n 2 ∗ n σ 2 = σ 2 n D(\bar{X})=D({1 \over n}\displaystyle\sum_{i=1}^nX_i)=({1 \over n})^2\displaystyle\sum_{i=1}^nE(X_i)={1 \over n^2}*n\sigma^2={\sigma^2 \over n} D(Xˉ)=D(n1i=1nXi)=(n1)2i=1nE(Xi)=n21nσ2=nσ2 1 ≥ P { ∣ X ˉ − E ( X ˉ ) ∣ < ε } = P { ∣ 1 n ∑ i = 1 n X i − μ ∣ < ε } ≥ 1 − D ( X ˉ ) ε 2 = 1 − σ 2 n ε 2 → a b c 1 \begin{aligned} 1&\ge P\{|\bar{X}-E(\bar{X})|<\varepsilon\}=P\{|{1 \over n}\displaystyle\sum_{i=1}^nX_i-\mu|<\varepsilon\}\\ &\geq1-{D(\bar{X}) \over \varepsilon^2}=1-{\sigma^2 \over n\varepsilon^2}\xrightarrow{abc}1 \end{aligned} 1P{XˉE(Xˉ)<ε}=P{n1i=1nXiμ<ε}1ε2D(Xˉ)=1nε2σ2abc 1

4.伯努利大数定理

设 n A 为 n 次 独 立 重 复 试 验 中 随 机 事 件 A 发 生 的 次 数 , 是 事 件 A 在 每 次 试 验 中 发 生 的 概 率 , 则 对 任 意 ε > 0 成 立 lim ⁡ n → ∞ P { n A n − p ∣ < ε } = 1 , 即 n A n → p p ( A ) 设n_A为n次独立重复试验中随机事件A发生的次数,是事件A在每次试验中发生的概率,则对任意\varepsilon>0成立\\ \lim_{n \to \infty}P\{{n_A \over n}-p|<\varepsilon\}=1, 即{n_A \over n}\xrightarrow{p}p(A) nAnAAε>0nlimP{nnAp<ε}=1nnAp p(A)

4.辛钦大数定理

lim ⁡ n → ∞ P { ∣ X ˉ − μ ∣ < ε } = 1 \lim_{n \to \infty}P\{|\bar{X}-\mu|<\varepsilon\}=1 nlimP{Xˉμ<ε}=1
注:伯努利大数定律指得是,当实验次数很大时,可以用事件发生的频率来代替事件的概率。辛钦大数定律不要求随机变量的方差存在,所以比伯努利大数定律有更广泛的应用范围。切比雪夫大数定律要求随机变量的期望和方差均存在,条件相对严格一些。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值