数理统计复习笔记(一)数理统计初步

基本概念

样本、总体、统计量

总体与个体

研究对象的全体叫做总体;其中的每个单元(或元素)叫做个体.

通常研究对象是某个指标,视为随机变量 X , X, X, 因而 X X X取值的全体叫做总体.

其中的每一个 X i ( i = 1 , 2 , ⋯   , n ) X_i(i=1,2,\cdots,n) Xi(i=1,2,,n)叫做个体.

样本

样本定义

在总体 X X X中抽取 n n n个个体 X 1 , X 2 , ⋯   , X n , X_1,X_2,\cdots,X_n, X1,X2,,Xn, n n n个个体就称为总体 X X X的容量为 n n n的样本.

样本值

对一次具体的抽取得到 n n n个数值 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn这一组数值叫做样本值,或叫做样本的观察值 .

简单随机样本

通常对样本的选取是有要求的.具有下面两个特点的样本叫简单随机样本.

(1) 每个个体 X i ( i = 1 , 2 , ⋯   , n ) X_i(i=1,2,\cdots,n) Xi(i=1,2,,n)与总体 X X X同分布;
(2) 任何两个个体 X i X_i Xi X j ( i ≠ j ) X_j(i\neq j) Xj(i=j)之间相互独立.

样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的联合分布

设总体 X X X的分布函数为 F ( x ) , F(x), F(x), 密度函数为 f ( x ) , f(x), f(x),样本的联合分布函数为 F ∗ ( X 1 , X 2 , ⋯   , X n ) , F^*(X_1,X_2,\cdots,X_n), F(X1,X2,,Xn),联合密度函数为 f ∗ ( x 1 , x 2 , ⋯   , x n ) . f^*(x_1,x_2,\cdots,x_n). f(x1,x2,,xn).则有
F ∗ ( X 1 , X 2 , ⋯   , X n ) = ∏ i = 1 n F ( x i ) ; f ∗ ( x 1 , x 2 , ⋯   , x n ) = = ∏ i = 1 n f ( x i ) . F^*(X_1,X_2,\cdots,X_n)=\quad\prod_{i=1}^nF(x_i);\\ f^*(x_1,x_2,\cdots,x_n)==\quad\prod_{i=1}^nf(x_i). F(X1,X2,,Xn)=i=1nF(xi);f(x1,x2,,xn)==i=1nf(xi).

统计量及样本的数字特征

统计量的定义

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自总体 X X X的一个样本, g ( X 1 , X 2 , ⋯   , X n ) g(X_1,X_2,\cdots,X_n) g(X1,X2,,Xn) X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的函数,若 g g g中不含未知参数,则称 g ( X 1 , X 2 , ⋯   , X n ) g(X_1,X_2,\cdots,X_n) g(X1,X2,,Xn)是一统计量.

常见统计量
统计量定义
样本平均值 X ‾ = 1 n ∑ i = 1 n X i \overline{X}={1\over n}\sum_{i=1}^nX_i X=n1i=1nXi
样本方差 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 = 1 n − 1 ( ∑ i = 1 n X i 2 − n X ‾ 2 ) S^2={1\over n-1}\sum_{i=1}^n(X_i-\overline{X})^2={1\over n-1}(\sum_{i=1}^nX_i^2-n\overline{X}^2) S2=n11i=1n(XiX)2=n11(i=1nXi2nX2)
样本标准差 S = S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S=\sqrt{S^2}=\sqrt{{1\over n-1}\sum_{i=1}^n(X_i-\overline{X})^2} S=S2 =n11i=1n(XiX)2
样本 k k k阶(原点)矩 A k = 1 n ∑ i = 1 n X i k ( k = 1 , 2 , ⋯   ) A_k={1\over n}\sum_{i=1}^nX_i^k(k=1,2,\cdots) Ak=n1i=1nXik(k=1,2,)
样本 k k k阶中心矩 B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k ( k = 1 , 2 , ⋯   ) B_k={1\over n}\sum_{i=1}^n(X_i-\overline{X})^k(k=1,2,\cdots) Bk=n1i=1n(XiX)k(k=1,2,)
定理5-1

E X = μ , D X = σ 2 , X 1 , X 2 , ⋯   , X n EX=\mu,DX=\sigma^2,X_1,X_2,\cdots,X_n EX=μ,DX=σ2,X1,X2,,Xn是来自总体 X X X的一个样本,则 E X ‾ = μ , D X ‾ = σ 2 n , E S 2 = σ 2 . E\overline{X}=\mu,D\overline{X}={\sigma^2\over n},ES^2=\sigma^2. EX=μ,DX=nσ2,ES2=σ2.

三大统计分布

χ 2 \chi^2 χ2分布
χ 2 \chi^2 χ2分布的定义

设总体 X ∼ N ( 0 , 1 ) , X 1 , X 2 , ⋯   , X n X\sim N(0,1),X_1,X_2,\cdots,X_n XN(0,1),X1,X2,,Xn为简单随机样本 ( X i ∼ N ( 0 , 1 ) ) , (X_i\sim N(0,1)), (XiN(0,1)),统计量 χ 2 \chi^2 χ2
χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 = ∑ i = 1 n X i 2 \chi^2=X^2_1+X^2_2+\cdots+X^2_n=\sum_{i=1}^n X^2_i χ2=X12+X22++Xn2=i=1nXi2
则称 χ 2 \chi^2 χ2所服从的分布为自由度是 n n n χ 2 \chi^2 χ2分布,记为 χ 2 ∼ χ 2 ( n ) . \chi^2\sim\chi^2(n). χ2χ2(n).

它的概率密度函数为
f ( y ) = { 1 2 n 2 Γ ( n 2 ) y n 2 − 1 e − y 2 , y > 0 0 , 其他, f(y)= \begin{cases} \frac{1}{2^{n\over2}\Gamma({n\over2})}y^{{n\over2}-1}e^{-{y\over2}},y>0\\ 0, \text{其他,} \end{cases} f(y)={22nΓ(2n)1y2n1e2y,y>00,其他,

χ 2 \chi^2 χ2分布的分位点

对给定的 α ( 0 < α < 1 ) , \alpha(0<\alpha<1), α(0<α<1),若有一点 χ α 2 ( n ) , \chi^2_\alpha(n), χα2(n),如果 P { χ 2 ( n ) > χ α 2 ( n ) } = α , P\{\chi^2(n)>\chi^2_\alpha(n)\}=\alpha, P{χ2(n)>χα2(n)}=α,则称此点为 χ 2 ( n ) \chi^2(n) χ2(n)分布的上 α \alpha α分位点.

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-d6KzHjAy-1597578937835)(C:\Users\HP\Desktop\概率论与数理统计笔记\imgs\sltj1\1.png)]

χ 2 \chi^2 χ2分布的可加性

χ 1 2 ( n ) ∼ χ 2 ( n 1 ) \chi^2_1(n)\sim\chi^2(n_1) χ12(n)χ2(n1), χ 2 2 ( n ) ∼ χ 2 ( n 2 ) \chi^2_2(n)\sim\chi^2(n_2) χ22(n)χ2(n2)且相互独立,则 χ 1 2 + χ 2 2 ∼ χ 2 ( n 1 + n 2 ) . \chi^2_1+\chi^2_2\sim\chi^2(n_1+n_2). χ12+χ22χ2(n1+n2).

χ 2 \chi^2 χ2分布的期望和方差

E ( χ 2 ( n ) ) = , D ( χ 2 ( n ) ) = 2 n . E(\chi^2(n))=,D(\chi^2(n))=2n. E(χ2(n))=,D(χ2(n))=2n.

t t t分布
t t t分布的定义

U ∼ N ( 0 , 1 ) , V ∼ χ 2 ( n ) , U , V U\sim N(0,1),V\sim \chi^2(n),U,V UN(0,1),Vχ2(n),U,V相互独立,记 T = U V / n , T={U\over\sqrt{V/n}}, T=V/n U,则称 T T T所服从的分布为自由度是 n n n t t t分布.记为 T ∼ t ( n ) . T\sim t(n). Tt(n).它的概率密度函数为
f ( t ) = Γ ( n + 1 2 ) n π Γ ( n 2 ) ( 1 + t 2 n ) − n − 1 2 ( − ∞ < t < + ∞ ) f(t)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \pi} \Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^{2}}{n}\right)^{-\frac{n-1}{2}}(-\infty<t<+\infty) f(t)=nπ Γ(2n)Γ(2n+1)(1+nt2)2n1(<t<+)
f ( t ) f(t) f(t)是偶函数,图形对称于中心轴 t = 0. t=0. t=0.

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nToaZ9fp-1597578937837)(C:\Users\HP\Desktop\概率论与数理统计笔记}YZP%0}VEJU@NOJQDU[][U.png)]

t t t分布的分位点:

对给定的 α ( 0 < α < 1 ) , \alpha(0<\alpha<1), α(0<α<1),若有一点 t α ( n ) , t_\alpha(n), tα(n),如果满足 P { T > t α ( n ) } = α , P\{T>t_\alpha(n)\}=\alpha, P{T>tα(n)}=α,则称此点为 t ( n ) t(n) t(n)分布的上 α \alpha α分位点.

t t t分布的性质
  1. t 1 − α ( n ) = − t α ( n ) . t_{1-\alpha}(n)=-t_\alpha(n). t1α(n)=tα(n).
  2. lim ⁡ n → ∞ f ( t ) = 1 2 π e − t 2 2 = φ ( t ) , \lim_{n\to\infty}f(t)={1\over\sqrt{2\pi}}e^{-{t^2\over2}}=\varphi(t), limnf(t)=2π 1e2t2=φ(t), t t t分布的极限分布为$N(0,1) 分 布 . 当 时 分布.当时 .n 很 大 时 很大时 t(n)$分布近似为 N(0,1)分布.
F F F分布
F F F分布的定义

U ∼ χ 2 ( m ) , V ∼ χ 2 ( n ) , U\sim\chi^2(m),V\sim\chi^2(n), Uχ2(m),Vχ2(n),并且 U , V U,V U,V相互独立,则称随机变量 F = U / m V / n F={U/m\over V/n} F=V/nU/m服从自由度为 ( m , n ) (m,n) (m,n) F F F分布,记作 F ∼ F ( m , n ) , F\sim F(m,n), FF(m,n),其分布密度为
f ( y ) = { Γ ( m + n 2 ) Γ ( m 2 ) Γ ( n 2 ) ( m n ) m 2 y μ 2 − 1 ( 1 + m n y ) − m + n 2 , y ⩾ 0 0 , y < 0 f(y)=\left\{\begin{array}{ll} \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)}\left(\frac{m}{n}\right)^{\frac{m}{2}} y^{\frac{\mu}{2}-1}\left(1+\frac{m}{n} y\right)^{-\frac{m+n}{2}}, & y \geqslant 0 \\ 0, & y<0 \end{array}\right. f(y)={Γ(2m)Γ(2n)Γ(2m+n)(nm)2my2μ1(1+nmy)2m+n,0,y0y<0
其中,m称为第一自由度,n称为第二自由度.

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-D1WBvvm6-1597578937839)(C:\Users\HP\Desktop\概率论与数理统计笔记\F.png)]

F ( m , n ) F(m,n) F(m,n)分布的分位点:

对给定的 α ( 0 < α < 1 ) , \alpha(0<\alpha<1), α(0<α<1),若有一点 F α ( n 1 , n 2 ) , F_\alpha(n_1,n_2), Fα(n1,n2),满足 P { F > F α ( n 1 , n 2 ) } = α , P\{F>F_\alpha(n_1,n_2)\}=\alpha, P{F>Fα(n1,n2)}=α,则称 F α ( n 1 , n 2 ) F_\alpha(n_1,n_2) Fα(n1,n2) F ( n 1 , n 2 ) F(n_1,n_2) F(n1,n2)分布的上 α \alpha α分位点.

F F F分布的性质:
  1. F ∼ F ( m , n ) , F\sim F(m,n), FF(m,n), 1 / F ∼ F ( n , m ) . 1/F\sim F(n,m). 1/FF(n,m).

  2. X 1 , X 2 , ⋯   , X m X_1,X_2,\cdots,X_m X1,X2,,Xm Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn分别表示取自两个正态总体 N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12) N ( μ 2 , σ 2 2 ) N(\mu_2,\sigma_2^2) N(μ2,σ22)的简单随机样本 , X ‾ , Y ‾ ,\overline{X},\overline{Y} ,X,Y S 1 2 , S 2 2 S_1^2,S_2^2 S12,S22分别表示其样本均值和方差,则有
    S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( m − 1 , n − 1 ) ; {S_1^2/S_2^2\over \sigma_1^2/\sigma_2^2}\sim F(m-1,n-1); σ12/σ22S12/S22F(m1,n1);

正态总体的样本均值与样本方差的分布:

设总体 X ∼ N ( μ , σ 2 ) , X 1 , X 2 , ⋯   , X n X\sim N(\mu,\sigma^2),X_1,X_2,\cdots,X_n XN(μ,σ2),X1,X2,,Xn是来自 X X X的样本,则有
X ‾ ∼ N ( μ , σ 2 n )  或  X ‾ − μ σ n ∼ N ( 0 , 1 ) ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) X ‾ − μ S n ∼ t ( n − 1 ) X 与 S 2 相 互 独 立 \begin{array}{l} \overline{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \text { 或 } \frac{\overline{X}-\mu}{\sigma} \sqrt{n} \sim N(0,1) \\ \frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1) \\ \frac{\overline{X}-\mu}{S} \sqrt{n} \sim t(n-1)\\ X与S^2相互独立 \end{array} XN(μ,nσ2)  σXμn N(0,1)σ2(n1)S2χ2(n1)SXμn t(n1)XS2

参数估计

点估计

θ \theta θ为未知,一般用样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn构造一个统计量 θ ^ [ θ ^ = θ ^ ( X 1 , X 2 , ⋯   , X n ) ] \hat{\theta}[\hat{\theta}=\hat{\theta}(X_1,X_2,\cdots,X_n)] θ^[θ^=θ^(X1,X2,,Xn)]来作为参数 θ \theta θ真值的估计,我们称 θ ^ \hat{\theta} θ^为未知参数 θ \theta θ的估计量,也称为 θ \theta θ的点估计.

矩估计

由于样本来自总体,它是总体的代表,样本的数字特征包含了总体数字特征的许多信息.因此可用样本均值 X ‾ \overline{X} X和样本方差 S 2 S^2 S2分别作为总体均值 μ \mu μ和总体方差 σ 2 \sigma^2 σ2的一种估计,记为 μ ^ = X ‾ , σ ^ 2 = S 2 . \hat{\mu}=\overline{X},\hat{\sigma}^2=S^2. μ^=X,σ^2=S2.

更一般地,用样本的某种矩作为总体的相应矩的估计.例如
μ ^ = m k = 1 n ∑ i = 1 n X i k , μ ^ k ′ = m k ′ = 1 n ∑ i = 1 n ( X i − X ‾ ) k . \hat{\mu}=m_k={1\over n}\sum_{i=1}^{n}X_i^k,\\ \hat{\mu}_k^\prime=m_k^\prime={1\over n}\sum_{i=1}^{n}(X_i-\overline{X})^k. μ^=mk=n1i=1nXik,μ^k=mk=n1i=1n(XiX)k.
这种用样本矩来估计总体矩的方法称为矩估计法,所得的估计称为矩估计.

极大似然估计

设总体 X ∼ f ( x , θ ) , X\sim f(x,\theta), Xf(x,θ),其中 θ \theta θ为待估计的未知参数. X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn为总体 X X X的一个样本, ( x 1 , x 2 , ⋯   , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn)是样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的一组观察值.那么 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)落在 ( x 1 , x 2 , ⋯   , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn)的邻域里的概率近似为 ∏ i = 1 n f ( x i , θ ) d x i = T , \prod_{i=1}^nf(x_i,\theta)dx_i=T, i=1nf(xi,θ)dxi=T,显然 T T T θ \theta θ的函数.由于 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)落在 ( x 1 , x 2 , ⋯   , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn)的邻域里这一事件已经发生了,故其概率应较大,即 T T T应较大.因此我们选择使T达最大的 θ ^ \hat{\theta} θ^作为未知参数 θ \theta θ的真实值的估计是合理的,这种估计法称为极大似然估计法.

对于每个观察值 ( x 1 , x 2 , ⋯   , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn)选择 θ ^ \hat{\theta} θ^使 T T T达最大等价于使 ∏ i = 1 n f ( x i , θ ) \prod_{i=1}^nf(x_i,\theta) i=1nf(xi,θ)达最大,即
∏ i = 1 n f ( x i , θ ^ ) = m a x ∏ i = 1 n f ( x i , θ ) \prod_{i=1}^nf(x_i,\hat{\theta})=max\prod_{i=1}^nf(x_i,\theta) i=1nf(xi,θ^)=maxi=1nf(xi,θ)

这样的 θ ^ \hat{\theta} θ^显然是 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn的函数,记为 θ ^ = θ ^ ( x 1 , x 2 , ⋯   , x n ) , \hat{\theta}=\hat{\theta}(x_1,x_2,\cdots,x_n), θ^=θ^(x1,x2,,xn), θ ^ \hat{\theta} θ^为未知参数 θ \theta θ的极大似然估计值.而称相应的统计量 θ ^ ( x 1 , x 2 , ⋯   , x n ) \hat{\theta}(x_1,x_2,\cdots,x_n) θ^(x1,x2,,xn)为未知参数 θ \theta θ的极大似然估计量.记
L ( x 1 , x 2 , ⋯   , x n ; θ ) = ∏ i = 1 n f ( x i , θ ) L(x_1,x_2,\cdots,x_n;\theta)=\prod_{i=1}^nf(x_i,\theta) L(x1,x2,,xn;θ)=i=1nf(xi,θ)
L ( x 1 , x 2 , ⋯   , x n ; θ ) L(x_1,x_2,\cdots,x_n;\theta) L(x1,x2,,xn;θ)为似然函数,简记为 L ( θ ) . L(\theta). L(θ).因此求的问题归结为求 L ( θ ) L(\theta) L(θ)的极值问题.

如果 L ( θ ) L(\theta) L(θ)关于 θ \theta θ可微,则 θ ^ \hat{\theta} θ^应满足=0.而 L ( θ ) L(\theta) L(θ)是函数连乘积的形式,取对数求导更方便,且 ln ⁡ L \ln L lnL 与 与 L L L有相同的极值点,所以 θ \theta θ应满足 ∂ ln ⁡ L ∂ θ = 0. {\partial\ln L\over\partial\theta}=0. θlnL=0.

对于离散型随机变量,式中的 f ( x i , θ ) f(x_i,\theta) f(xi,θ)可用分布律 p ( x i , θ ) p(x_i,\theta) p(xi,θ)来代替,其结果相同.

区间估计

置信区间

设总体 X X X的分布函数 F ( x ; θ ) F(x;\theta) F(x;θ)含有一个未知参数 θ , θ ∈ Θ \theta,\theta\in\Theta θ,θΘ( Θ \Theta Θ θ \theta θ可能取值的范围),对于给定值 α ( 0 < α < 1 ) , \alpha(0<\alpha<1), α(0<α<1),若由来自 X X X的样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn确定的两个统计量 θ ‾ = θ ‾ ( X 1 , X 2 , ⋯   , X n ) \underline{\theta}=\underline{\theta}(X_1,X_2,\cdots,X_n) θ=θ(X1,X2,,Xn) θ ‾ = θ ‾ ( X 1 , X 2 , ⋯   , X n ) , \overline{\theta}=\overline{\theta}(X_1,X_2,\cdots,X_n), θ=θ(X1,X2,,Xn),对于任意 θ ∈ Θ \theta\in\Theta θΘ满足
P { θ ‾ ( X 1 , X 2 , ⋯   , X n ) < θ < θ ‾ ( X 1 , X 2 , ⋯   , X n ) } ≥ 1 − α P\{\underline{\theta}(X_1,X_2,\cdots,X_n)<\theta<\overline{\theta}(X_1,X_2,\cdots,X_n)\}\geq1-\alpha P{θ(X1,X2,,Xn)<θ<θ(X1,X2,,Xn)}1α
则称随机区间 ( θ ‾ , θ ‾ ) (\underline{\theta},\overline{\theta}) (θ,θ) θ \theta θ的置信水平为 1 一 α 1一\alpha 1α的置信区间, θ ‾ \underline{\theta} θ θ ‾ \overline{\theta} θ分别称为置信水平为 1 一 α 1一\alpha 1α的双侧置信区间的置信下限和置信上限称为 1 一 α 1一\alpha 1α置信水平.

单个总体 N ( μ , σ 2 ) N\left(\mu, \sigma^{2}\right) N(μ,σ2) 的情况
估计均值 μ \mu μ

σ 2 \sigma^{2} σ2已知时,抽样分布 U = X ‾ − μ σ / n   N ( 0 , 1 ) . U={\overline{X}-\mu\over \sigma/\sqrt{n}}~N(0,1). U=σ/n Xμ N(0,1).

置信度为$1 一 \alpha $的双侧置信区间为
( X ˉ − u a 2 ⋅ σ n , X ˉ + u a 2 ⋅ σ n ) \left(\bar{X}-u_{\frac{a}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \bar{X}+u_{\frac{a}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right) (Xˉu2an σ,Xˉ+u2an σ)

σ 2 \sigma^{2} σ2未知时,抽样分布 U = X ‾ − μ S / n   t ( n − 1 ) . U={\overline{X}-\mu\over S/\sqrt{n}}~t(n-1). U=S/n Xμ t(n1).

置信度为$1 一 \alpha $的双侧置信区间为
( X ˉ − t a 2 ⋅ S n , X ˉ + t a 2 ⋅ S n ) \left(\bar{X}-t_{\frac{a}{2}} \cdot \frac{S}{\sqrt{n}}, \bar{X}+t_{\frac{a}{2}} \cdot \frac{S}{\sqrt{n}}\right) (Xˉt2an S,Xˉ+t2an S)

估计方差 σ 2 \sigma^{2} σ2

μ \mu μ 已知时 , , , 抽样分布 W = 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) , W=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\sim \chi^{2}(n), W=σ21i=1n(Xiμ)2χ2(n),置信度为 1 − α 1-\alpha 1α 的双侧置信区问为
( ∑ i = 1 n ( X i − μ ) 2 χ α 2 2 ( n ) , ∑ i = 1 n ( X i − μ ) 2 χ 1 − α 2 2 ( n ) ) \left(\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n)}, \frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n)}\right) (χ2α2(n)i=1n(Xiμ)2,χ12α2(n)i=1n(Xiμ)2)

μ {\mu} μ 未知 时, 抽样分布 W ′ = ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) , W^{\prime}=\frac{(n-1) S^{2}}{\sigma^{2}}\sim\chi^{2}(n-1), W=σ2(n1)S2χ2(n1),双侧置信区问为
( ( n − 1 ) S 2 χ α 2 2 ( n − 1 ) , ( n − 1 ) S 2 χ 1 − a 2 2 ( n − 1 ) ) \left(\frac{(n-1) S^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)}, \frac{(n-1) S^{2}}{\chi_{1-\frac{a}{2}}^{2}(n-1)}\right) (χ2α2(n1)(n1)S2,χ12a2(n1)(n1)S2)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5XMydlwk-1597578937842)(C:\Users\HP\Desktop\概率论与数理统计笔记\1-1597420611500.png)]

假设检验

假设检验定义

对总体的分布类型或分布中的某些未知参数作出某种假定﹐然后抽取一个子样并选择一个合适的检验统计量.

利用检验统计量的观察值和预先给定的误差α,对所作假设成立与否作出定性判断,称为假设检验.只对分布中未知参数提出假设并作检验,则称为参数假设检验.

假设检验基本思想的依据

小概率原理是指概率很小的事件在试验中发生的频率也很小,因此小概率事件在一次试验中不可能发生.

当对问题提出待检假设 H 0 , H_0, H0,并要检验它是否可信时,先假定 H 0 H_0 H0正确.

在这个假定下,经过一次抽样.

若小概率事件发生了,就作出拒绝 H 0 H_0 H0的决定;

否则,若小概率事件未发生,则接受 H 0 . H_0. H0.

两类错误

人们作出判断的依据是一个样本,样本是随机的,因而人们进行假设检验判断 H 0 H_0 H0可信与否时,不免发生误判而犯两类错误.

第一类错误: H 0 H_0 H0为真,而检验结果将其否定,这称为“弃真”错误;

第二类错误: H 0 H_0 H0不真,而检验结果将其接受,这称为“取伪”错误.

单个总体 N ( μ , σ 2 ) N\left(\mu, \sigma^{2}\right) N(μ,σ2) 的均值 μ \mu μ 的检验
σ 2 \sigma^{2} σ2 已知

原假设 H 0 : μ = μ 0 , H_{0}: \mu=\mu_{0}, H0:μ=μ0,备择假设 H 1 : H_1: H1:

1. μ ≠ μ 0 1.\mu \neq \mu_{0} 1.μ=μ0 (双侧检验)

2. μ > μ 0 2.\mu>\mu_{0} 2.μ>μ0 (右侧检验)

3. μ < μ 0 3.\mu<\mu_{0} 3.μ<μ0 (左侧检验)。

给出 α , H 0 \alpha, H_{0} α,H0 的拒绝域(小概率事件)

1. ∣ U ∣ > z a 2 1.\mid U\mid>z_{\frac{a}{2}} 1.U>z2a

2. U > z α 2.U>z_{\alpha} 2.U>zα

3. U < − z α 3.U<-z_{\alpha} 3.U<zα

X ‾ \overline{X} X来说 , H 0 ,H_0 ,H0的拒绝域为

X ˉ < μ 0 − z α 2 σ n \bar{X}<\mu_{0}-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} Xˉ<μ0z2αn σ X ˉ > μ 0 + z α 2 σ n \bar{X}>\mu_{0}+z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} Xˉ>μ0+z2αn σ

X ˉ > μ 0 + z α σ n \bar{X}>\mu_{0}+z_{\alpha} \frac{\sigma}{\sqrt{n}} Xˉ>μ0+zαn σ

X ˉ < μ 0 − z α σ n \bar{X}<\mu_{0}-z_{\alpha} \frac{\sigma}{\sqrt{n}} Xˉ<μ0zαn σ

σ 2 \sigma^{2} σ2 未知

H 0 : μ = μ 0 . H_{0}: \mu=\mu_{0}. H0:μ=μ0.

H 1 : H_{1}: H1:

1. μ ≠ μ 0 1.\mu \neq \mu_{0} 1.μ=μ0

2. μ > μ 0 2.\mu>\mu_{0} 2.μ>μ0

3. μ < μ 0 3.\mu<\mu_{0} 3.μ<μ0

统讲量 T = X ˉ − μ 0 S / n ∼ t ( n − 1 ) T=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}} \sim t(n-1) T=S/n Xˉμ0t(n1)

给出 α , H 0 \alpha, H_{0} α,H0 的拒绝域(小概率事件)

1. ∣ T ∣ > t a 2 ( n − 1 ) 1.\mid T\mid>t_{\frac{a}{2}}(n-1) 1.T>t2a(n1)

2. T > t a ( n − 1 ) 2.T>t_{a}(n-1) 2.T>ta(n1)

3. T < − t a ( n − 1 ) 3.T<-t_{a}(n-1) 3.T<ta(n1)

X ‾ \overline{X} X来说 , H 0 ,H_0 ,H0的拒绝域为

X ˉ < μ 0 − t α 2 ( n − 1 ) S n \bar{X}<\mu_{0}-t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}} Xˉ<μ0t2α(n1)n S X ˉ > μ 0 + t α 2 ( n − 1 ) S n \bar{X}>\mu_{0}+t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}} Xˉ>μ0+t2α(n1)n S

X ˉ > μ 0 + t α ( n − 1 ) S n \bar{X}>\mu_{0}+t_{\alpha}(n-1)\frac{S}{\sqrt{n}} Xˉ>μ0+tα(n1)n S

X ˉ < μ 0 − t α ( n − 1 ) S n \bar{X}<\mu_{0}-t_\alpha(n-1)\frac{S}{\sqrt{n}} Xˉ<μ0tα(n1)n S

单个总体方差的检验
μ \mu μ 已知

H 0 : σ 2 = σ 0 2 H_{0}:\sigma^{2}=\sigma_{0}^{2} H0:σ2=σ02

H 1 : H_{1}: H1:

1. σ 2 ≠ σ 0 2 1.\sigma^{2}\neq\sigma_{0}^{2} 1.σ2=σ02

2. σ 2 > σ 0 2 2.\sigma^{2}>\sigma_{0}^{2} 2.σ2>σ02

3. σ 2 < σ 0 2 3.\sigma^{2}<\sigma_{0}^{2} 3.σ2<σ02

统计量

k 2 = ∑ i = 1 n ( X i − μ ) 2 σ 0 2 ∼ χ 2 ( n ) k^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n) k2=σ02i=1n(Xiμ)2χ2(n)
给出 α , H 0 \alpha, H_{0} α,H0 的拒绝域(小概率事件)

1.0 < k 2 < χ ( − α 2 ) 2 ( n ) 1.0<k^{2}<\chi_{\left(-\frac{\alpha}{2}\right)}^{2}(n) 1.0<k2<χ(2α)2(n) k 2 > χ 2 2 2 ( n ) k^{2}>\chi_{\frac{2}{2}}^{2}(n) k2>χ222(n)

2. k 2 > X a 2 ( n ) 2.k^{2}>\mathcal{X}_{a}^{2}(n) 2.k2>Xa2(n)

3.0 < k 2 < χ 1 − a 2 ( n ) 3.0<k^{2}<\chi_{1-a}^{2}(n) 3.0<k2<χ1a2(n)

μ \mu μ 未知

H 0 : σ 2 = σ 0 2 H_{0}: \sigma^{2}=\sigma_{0}^{2} H0:σ2=σ02

H 1 : H_{1}: H1:

1. σ 2 ≠ σ 0 2 1.\sigma^{2}\neq\sigma_{0}^{2} 1.σ2=σ02

2. σ 2 > σ 0 2 2.\sigma^{2}>\sigma_{0}^{2} 2.σ2>σ02

3. σ 2 < σ 0 2 3.\sigma^{2}<\sigma_{0}^{2} 3.σ2<σ02

统计量
k 2 = ( n − 1 ) S 2 σ 0 2 ∼ χ 2 ( n − 1 ) k^{2}=\frac{(n-1) S^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n-1) k2=σ02(n1)S2χ2(n1)
给出 α , H 0 \alpha, H_{0} α,H0 的拒绝域(小概率事件)

1.0 < k 2 < χ 1 − a 2 2 ( n − 1 ) 1.0<k^{2}<\chi_{1-\frac{a}{2}}^{2}(n-1) 1.0<k2<χ12a2(n1) k 2 > χ 2 2 2 ( n − 1 ) k^{2}>\chi_{\frac{2}{2}}^{2}(n-1) k2>χ222(n1)

2. k 2 > χ a 2 ( n − 1 ) 2.k^{2}>\chi_{a}^{2}(n-1) 2.k2>χa2(n1)

3.0 < k 2 < χ 1 − a 2 ( n − 1 ) 3.0<k^{2}<\chi_{1-a}^{2}(n-1) 3.0<k2<χ1a2(n1)

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值