统计学面试经典问题

1. 叙述你所熟悉的大数定律与中心极限定理,并举例说明它在统计学中的应用。

1) 大数定律
  • 弱大数定律(通常指辛钦大数定律):
    a) 马尔科夫大数定律:
    随机变量满足马尔科夫条件: 1 n 2 D ( ∑ k = 1 n ξ k ) → 0 \frac {1}{n^2} D(\sum^n_{k=1} \xi_k)\rightarrow 0 n21D(k=1nξk)0,则样本均值依概率收敛于期望值。
    b) 辛钦大数定律:
    随机变量独立同分布,一阶矩存在且等于 a a a,样本均值依概率收敛于期望值 a a a

  • 强大数定律(柯尔莫哥洛夫):
    随机变量独立同分布,一阶矩存在且等于 a a a,样本均值以概率1收敛于期望值 a a a

2) 中心极限定理
  • Lindeberg-Levy 中心极限定理(最早的版本是de Moivre – Laplace,指出二项分布的极限为正态分布):

随机变量 X 1 , X 2 , ⋯   , X n X_{1},X_{2},\cdots ,X_{n} X1,X2,,Xn 独立同分布, 且具有有限的数学期望和方差 E ( X i ) = μ E(X_{i})=\mu E(Xi)=μ D ( X i ) = σ 2 ≠ 0 ( i = 1 , 2 , ⋯   , n ) D(X_{i})=\sigma ^{2}\neq 0(i=1,2,\cdots ,n) D(Xi)=σ2=0(i=1,2,,n),记 X ˉ = 1 n ∑ i = 1 n X i , {\bar {X}}={\frac {1}{n}}\sum _{i=1}^{n}X_{i}, Xˉ=n1i=1nXi, ζ n = X ˉ − μ σ / n , \zeta _{n}={\frac { {\bar {X}}-\mu }{\sigma /{\sqrt {n}}}}, ζn=σ/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值