1. 叙述你所熟悉的大数定律与中心极限定理,并举例说明它在统计学中的应用。
1) 大数定律
-
弱大数定律(通常指辛钦大数定律):
a) 马尔科夫大数定律:
随机变量满足马尔科夫条件: 1 n 2 D ( ∑ k = 1 n ξ k ) → 0 \frac {1}{n^2} D(\sum^n_{k=1} \xi_k)\rightarrow 0 n21D(∑k=1nξk)→0,则样本均值依概率收敛于期望值。
b) 辛钦大数定律:
随机变量独立同分布,一阶矩存在且等于 a a a,样本均值依概率收敛
于期望值 a a a。 -
强大数定律(柯尔莫哥洛夫):
随机变量独立同分布,一阶矩存在且等于 a a a,样本均值以概率1收敛
于期望值 a a a。
2) 中心极限定理
- Lindeberg-Levy 中心极限定理(最早的版本是de Moivre – Laplace,指出二项分布的极限为正态分布):
随机变量 X 1 , X 2 , ⋯ , X n X_{1},X_{2},\cdots ,X_{n} X1,X2,⋯,Xn 独立同分布, 且具有有限的数学期望和方差 E ( X i ) = μ E(X_{i})=\mu E(Xi)=μ , D ( X i ) = σ 2 ≠ 0 ( i = 1 , 2 , ⋯ , n ) D(X_{i})=\sigma ^{2}\neq 0(i=1,2,\cdots ,n) D(Xi)=σ2=0(i=1,2,⋯,n),记 X ˉ = 1 n ∑ i = 1 n X i , {\bar {X}}={\frac {1}{n}}\sum _{i=1}^{n}X_{i}, Xˉ=n1i=1∑nXi, ζ n = X ˉ − μ σ / n , \zeta _{n}={\frac { {\bar {X}}-\mu }{\sigma /{\sqrt {n}}}}, ζn=σ/