双曲嵌入深度学习

1. 双曲空间

双曲空间的定义是曲率为负常数的一类空间。我们首先以一个图为例,来看欧式空间与双曲空间的区别。

左图为欧式空间,我们从中间节点向外部移动,走一步所能达到的网格数量是 3 2 3^2 32,两步是 5 2 5^2 52,网络空间会随着半径多项式(平方)的关系进行增长。反观右侧的树结构空间,假设为二叉树,从中心点向外走的节点个数是呈指数增长的,因此这是一个呈指数增长的空间。

假设右侧的树结构我们嵌入到欧式空间上,那么红色的节点到绿色的节点在树上的距离相距 8 8 8个结点,但直接在平面上看两个节点非常近。一个好的嵌入实际上是需要保距的,这时我们就可以在原本的欧式空间上引进曲率,将原本的平面转化为曲面。

1)曲率(Curvature)

曲率是描述几何体弯曲程度的量,例如曲面偏离平面的程度,或者曲线偏离直线的程度。

直线的曲率为 0 0 0;圆为常数曲率(即每一点的曲率都是一样的),半径的导数为其曲率,圆越小,曲率越大。而抛物线有曲率,但每一点的曲率都不一致。

正负曲率可通过如下几何方式解释:

  • 正曲率:曲面上的三角形的内角和大于 π \pi π
  • 负曲率:负曲率曲面上的三角形的内角和小 π \pi π

下面的马鞍面为负曲率曲面:

双曲空间是曲率为负常数的一类空间,双曲空间随着半径增大呈现指数扩展,它可以看成是连续的树结构空间。这种特性与理论和现实中的很多现象相符合,使得双曲空间具有广阔的应用。

为了更详细地介绍双曲空间,我们首先引入一个新的概念:度规张量。

2)度规张量(Metric tensor)

在黎曼几何里面,度量张量又叫黎曼度量,物理学译为度规张量,是指一用来衡量度量空间中距离,面积及角度的二阶张量。本质上是将集合中⼀对元素映射为实数的映射。其可以在任意⼀个曲⾯(流形)的切向量空间中定义度规,该度规将两个向量映射为⼀个实数,度规实际上可以看作是对向量的内积以及距离等概念的推广,它是一种双线性函数。

当选定一个局部坐标系统 x i x^{i} xi,度量张量为二阶张量一般表示为 d s 2 = ∑ i j g i j d x i d x j ds^2=\sum_{ij}g_{ij}dx^i dx^j ds2=ijgijdxidxj,给定一组基后,也可以用矩阵 ( g i j ) (g_{ij}) (gij) 表示,记作为 G G G g g g。而 g i j g_{ {ij}} gij 记号传统地表示度量张量的协变分量(亦为“矩阵元素”)。

a a a b b b 的弧线长度定义如下,其中参数定为 t t t t t t a a a b b b:

L = ∫ a b ∑ i j g i j d x i d t d x j d t d t L = \int_a^b \sqrt{ \sum_{ij}g_{ij}{dx^i\over dt}{dx^j\over dt}}dt L=abijgijdtdxidtdxj dt

两个切矢量的夹角 θ \theta θ ,设矢量 U = ∑ i u i ∂ ∂ x i U=\sum_i u^i{\partial\over \partial x_i} U=iuixi V = ∑ i v i ∂ ∂ x i V=\sum_i v^i{\partial\over \partial x_i} V=ivixi,定义为:

cos ⁡ θ = ⟨ u , v ⟩ ∣ u ∣ ∣ v ∣ = ∑ i j g i j u i v j ∣ ∑ i j g i j u i u j ∣ ∣ ∑ i j g i j v i v j ∣ \cos \theta =\frac{\langle u, v\rangle}{|u||v|}= \frac{\sum_{ij}g_{ij}u^iv^j} {\sqrt{ \left| \sum_{ij}g_{ij}u^iu^j \right| \left| \sum_{ij}g_{ij}v^iv^j \right|}} cosθ=uvu,v=ijgijuiujijgijvivj ijgijuivj

a. 欧几里德几何度量

二维欧几里德度量张量:

( g i j ) = [ 1 0 0 1 ] (g_{ij}) = \begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix} (gij)=[1001]

其度规就是内积,而弧线长度的计算方式则可以转为我们熟悉的微积分方程计算方法:

L = ∫ a b ( d x 1 d t ) 2 + ( d x 2 d t ) 2 d t L=\int _{a}^{b}{\sqrt {\left({\frac {dx^{1}}{dt}}\right)^{2}+\left({\frac {dx^{2}}{dt}}\right)^{2}}}\mathrm {d} t L=ab(dtdx1)2+(dtdx2)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值