判别数据是否满足正态分布,将非正态分布转化为正态分布

本文主要分两个部分,(1)判别当前数据是否满足正态分布;(2)介绍几种非正态分布转化为正态分布的方法;

1. 正态分布判别

常用的正态分布判别方法主要有三种方法:

(1)直方图:直方图(Histogram)又称质量分布图。是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据类型,纵轴表示分布情况。如下图1所示为满足正态分布的直方图样例。
(2)P-P图:P-P图是根据变量的累积比例与指定分布的累积比例之间的关系所绘制的图形。通过P-P图可以检验数据是否符合指定的分布。当数据符合指定分布时,P-P图中各点近似呈一条直线。
(3)Q-Q图:如果两个分布相似,则该Q-Q图趋近于落在y=x线上。如果两分布线性相关,则点在Q-Q图上趋近于落在一条直线上,但不一定在y=x线上。

                                                         

                                                                      图1  满足正态分布的直方图

                                                                      

                                                                      图2   满足正态分布的Q-Q图

                                                   

                                                                       图3  不满足正态分布的Q-Q图 

2. 非正态分布转化为正态分布

如上图3所示,通过Q-Q图可以看出该曲线不是直线,且不在y=x方向,故该组数据不满足正态分布,且不是线性相关。因后续工作需求,要将非正态分布数据转化为正态分布。

常用的正态分布转化方法如下:

(1)Z变换:网上搜索相关函数, 找到matlab和R语言的实现教程, python的暂时没找到.

matlab教程地址: https://jingyan.baidu.com/article/359911f573421657fe0306b8.html

R教程地址: https://www.rdocumentation.org/packages/GeneNet/versions/1.2.13/topics/z.transform

使用Z变换代码如下,变换得到y2序列的Q-Q图,如下图4所示, 对该数据正态化处理无显著效果, 继续寻找合适该序列的正态分布处理方法.

%% matlab使用Z变换
syms n z clear
y1 = ztrans(y,n,z);
pretty(y1);
y2 = iztrans(y1, z, n);
qqplot(y2);
## 使用R语言进行Z变换
y1 <- y.transform(y)
y2 <- hotelling.transform(y, 7)

                                                 

                                                                         图4  Z变换后的序列Q-Q图

(2)对数转换: 该方法只需要对原始数据y使用对数函数即可, 且对数的底数不同, 对结果无影响.

如下图5所示,使用log10(),对数转化之后,仍然为非正态分布。

                                               

                                                                       图5  使用对数转换之后的Q-Q图 

                                           

                                                                   

  • 6
    点赞
  • 3
    评论
  • 57
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值