检验数据集是否服从正态分布

1.图示法

1.p-p图

以样本的累积频率作为横坐标,以正太分布计算的响应累积概率作为纵坐标,把样本值表现为执教坐标系中的散点。若数据集服从正太分布,则样本点应围绕第一象限的对角线分布。


1.2 QQ图

以样本的分位数作为横坐标,以按照正太分布计算的相应分位点作为纵坐标,把样本表现为直角坐标系的散点。若服从正太分布,则样本点应该呈一条围绕第一象限对角线的直角。https://jingyan.baidu.com/article/48a42057e667bda9242504f5.html


1.3直方图(最直观)

判断方法:是否以钟形分布,同事可以选择输出正态曲线

1.4箱式图

判断方法:观测离群值和中位数

1.5茎叶图

类似于直方图,但实质不同


2.计算法

2.1偏度系数和峰度系数

是可以用来衡量数据集的分布形状的系数。

偏度系数计算公式:(取值范围通常再-3~3,衡量了数据集的对称程度;0数据集对称,负左侧分散,正右侧分散)


峰度系数(负说明数据集较集中,两侧数据集较少。为正则相反;偏度系数和峰度系数都为0,则该数据集服从标准的正态分布):


https://blog.csdn.net/wzgl__wh/article/details/52080688

偏度:


峰度:


http://bbs.instrument.com.cn/topic/5969170/

2.2非参数检验方法

包括kolmogorov-smirnov检验(D检验)和Shapiro-Wilk(W检验)




  • 2
    点赞
  • 1
    评论
  • 16
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值