关于知识图谱的trans系列一:transE
论文链接
https://www.utc.fr/~bordesan/dokuwiki/_media/en/transe_nips13.pdf
参考链接
https://zhuanlan.zhihu.com/p/32993044
abstract:
Hence, we propose TransE, a method which models relationships by interpreting them as translations operating on the low-dimensional embeddings of the entities.
论文提出TransE模型学习词向量的思想将元组之间的关系嵌入到低维空间中去
introduction:
Multi-relational data refers to directed graphs whose nodes correspond to entities and edges of the form (head, label, tail) (denoted (h, l, t)) 文中用三元组表示实体与实体之间的关系(h,l,t) model: if (h, l, t) holds, then the embedding of the tail entity t should be close to the embedding of the head entity h plus some vector that depends on the relationship
模型的思想大致就是模型学习到的的实体h向量+关系向量l=实体t的向量