关于知识图谱的trans系列一:transE

TransE是一种将实体和关系映射到低维向量空间,并通过向量加法来表示关系的方法。该模型参数少,适用于1对1的关系表示,但不适用于1对多或多对1关系。其目标函数基于能量框架,通过最小化正样本的d值和最大化负样本的d值(使用L1或L2范数)实现关系的区分。在Wordnet和Freebase数据集上的实验验证了其效果。
摘要由CSDN通过智能技术生成

关于知识图谱的trans系列一:transE

论文链接
https://www.utc.fr/~bordesan/dokuwiki/_media/en/transe_nips13.pdf
参考链接
https://zhuanlan.zhihu.com/p/32993044
abstract:
Hence, we propose TransE, a method which models relationships by interpreting them as translations operating on the low-dimensional embeddings of the entities.
论文提出TransE模型学习词向量的思想将元组之间的关系嵌入到低维空间中去
introduction:
Multi-relational data refers to directed graphs whose nodes correspond to entities and edges of the form (head, label, tail) (denoted (h, l, t)) 文中用三元组表示实体与实体之间的关系(h,l,t) model: if (h, l, t) holds, then the embedding of the tail entity t should be close to the embedding of the head entity h plus some vector that depends on the relationship
模型的思想大致就是模型学习到的的实体h向量+关系向量l=实体t的向量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值