摘要
针对时延未知的带噪信号,使用广义相关算法计算时延估计。为提高估计精度,采用蒙特卡洛方法估计时延值。首先模拟建立两个带噪且互不相关的接收信号,通过广义相关算法多次实验计算时延,接着利用蒙特卡洛方法对多次实验计算得出的时延求均值,从而利用均值估计出时延。仿真实验表明,当信噪比为时,本实验采用的方法误差为 2.27%。
Abstract
A generalized cross-correlation time delay estimation algorithm is proposed to calculate the time delay between two signals with noise and unknown delay. The Monte Carlo method is used to improve the estimation accuracy. Two irrelevant signals with noise are constructed in the simulation. Then make a few times of experiments using the generalized cross-correlation algorithm to get the delay in every experiment, and use the Monte Carlo method to calculate the mean which represents the time delay. Simulation results show that the relative error is 2.27% when the signal-to-noise ratio is 6 dB.
一、引言
时延估计是信号处理领域较为重要的问题,其在雷达[1]、声纳[2]、无线电通信[3]等领域得到广泛的应用。
经典的时延估计算法有基本相关法、广义相关算法[4]、子空间估计算法[5]和自适应算法[6]等。在高信噪比和高采样率的条件下,相关算法可以得到精确的时延估计。但其需要估计信号功率谱,只能估计采样间隔整数倍时延,且需峰值检测。子空间类算法可实现多径时延估计,但该算法需要矩阵运算,计算量大且需要峰值检测。自适应估计法需在采样间隔整数倍时延估计出后利用该算法估计出小数部分,进而提高估计精度。近年来,针对不同的应用环境,很多算法被应用于时延估计。
同时,新的信号处理算法也用于时延估计中。蒙特卡洛方法是一类非常重要的数值计算方法,它以概率统计理论为指导,使用随机数或伪随机数,采用统计抽样理论近似求解问题。其主要理论基础是概率论中的大数定律[7],其主要手段是随机变量的抽样[8]。文献[9]和文献[10]利用重要性采样(IS)的方法实现了参考信号已知条件下的非多径和多径的时延估计,进而将蒙特卡洛算法的思想应用到了时延估计中。这类算法的思想是利用蒙特卡洛(MC)方法对未知参数的分布函数抽样,计算样本均值直接得到参数估计结果,具有很好的实践意义[11]。
本文使用广义相关算法,配合蒙特卡洛方法,计算两模拟接收信号的延迟估计值,并与实际延迟进行对比,分析了该方法的误差和优缺点。
二、问题描述
时延估计所要解决的基本问题为:准确、迅速地估计和测定接收器或接收阵列接收到的同源信号之间的时间延迟。由于在接收现场可能存在各种噪声和干扰,接收到的目标信号往往淹没于噪声和干扰之中。因此,对带噪信号进行时延估计要排除噪声和干扰的影响,提高接收信号的信噪比。
三、处理方法
(一)原理
1. 基本时延估计方法
相关法是最经典的时延估计方法,它通过信号的自相关函数滞后的峰值估计信号之间延迟的时间差[12]。其基本思想是利用两信号和的相关函数来估计时间延迟。假设两接收信号为:
和是两个相互独立的接收信号,和