m基于matlab的无线自组网性能仿真,包括端到端时延,吞吐量,初入网时间,迟入网时间,网络建立时间

目录

1.算法仿真效果

2.算法涉及理论知识概要

3.MATLAB核心程序

4.完整算法代码文件


1.算法仿真效果

matlab2022a仿真结果如下:

 

 

2.算法涉及理论知识概要

        无线自组网(Wireless Ad Hoc Network,简称WANET)是一种无需基础设施支持的网络,它由一组移动的无线节点组成,这些节点可以自组织形成一个网络,实现数据的传输和共享。由于WANET是一种去中心化的网络,因此其性能受到节点移动、信道状态、路由算法等多种因素的影响。为了评估WANET的性能,需要进行性能仿真来模拟实际网络环境下的数据传输和节点行为。

        从端到端时延、吞吐量、初入网时间、迟入网时间和网络建立时间等方面详细介绍无线自组网性能仿真。

一、端到端时延

       端到端时延是指从源节点发送数据到目的节点接收到数据所需的总时间,包括数据传输时间、排队时间、传输时延、处理时延等。在WANET中,端到端时延受到多种因素的影响,如节点的移动速度、信道状态、路由算法等。

二、吞吐量

       吞吐量是指网络中单位时间内能够传输的数据量。在WANET中,节点的移动和信道状态的变化会影响网络的吞吐量。为了评估WANET的吞吐量性能,需要进行基于仿真的实验。常用的仿真工具包括NS-3、Omnet++等。在仿真中,需要设置合适的节点移动速度、信道参数、路由协议等参数,以模拟实际网络环境下节点的行为。通过收集仿真数据,可以计算出不同场景下的平均吞吐量、吞吐量分布等指标,评估WANET的性能。

       对于无线自组网而言,有一种常见的情况是由于信道状态变化或节点移动导致网络分割,从而降低网络吞吐量。因此,在仿真中需要考虑这种网络分割情况,以更全面地评估WANET的吞吐量性能。

三、初入网时间

      初入网时间是指一个节点加入WANET后,能够与其他节点正常通信的时间。在WANET中,节点加入网络需要进行网络发现、路由建立等多个步骤,这些步骤会影响节点初入网的时间。

四、迟入网时间

       迟入网时间是指一个节点在WANET中重新加入网络后,能够与其他节点正常通信的时间。在WANET中,节点重新加入网络需要进行网络发现、路由建立等多个步骤,这些步骤会影响节点迟入网的时间。

五、网络建立时间

        网络建立时间是指整个WANET从无到有建立起来所需的时间。在WANET中,网络建立需要进行节点发现、路由建立、网络拓扑构建等多个步骤,这些步骤会影响网络建立的时间。

        总之,无线自组网性能仿真是评估WANET性能的重要手段,通过端到端时延、吞吐量、初入网时间、迟入网时间和网络建立时间等指标的评估,可以帮助研究人员优化WANET的设计和性能,提高其应用效果。同时,需要注意在仿真中设置合适的场景和参数,以更准确地评估WANET性能。

3.MATLAB核心程序

...................................................................


        N     = 15;
        tdrift= tclk*Tslot*N;
        %融合组网
        %接收节点信息进行帧检测
        %检测是否同步
        flag   = 0;
        Tss    = [];
        Tee    = [];
        Delays = [];
        ixk    = 0;
        while ixk<=length(paths) 
            ixk = ixk+1;
            frame1D2= frame1D + randn(size(frame1D));
            yy     = xcorr(frame1D2(1:end-10000),PN1);
            yy2    = yy;
            pnx    = find(yy2>100);
            if isempty(pnx) == 0;
               %建立动态时延关系表 
               for ij = 1:length(ttra2)
                   Delays(ij) = ttra3+ttra2(ij) + Tslot + tdrift;
               end
               %确定参考节点
               IDrefS = idx1;
               IDrefD = idx2;
               %广播参考节点
               TimeS  = (ixk+2+0.2*rand);%发送点的时间,设置随机发送时间
               %更新节点时间%完成更新
               TimeD  = TimeS + [sum(Delays)];
               flag   = 1;
            else
               %没检测到,不做处理  
               TimeS = 0;
               TimeD = 0;
               Delays= 0;
               flag  = 0;
            end
            Tss    = [Tss,TimeS];
            Tee    = [Tee,TimeD];
        end
 

        %端到端时延
        TimeD2D(jj)  = sum(Delays);
        %网络吞吐量与带宽,跳数相关
        th           = BW/Nhops;
        Throughput0(jj)= th/1e3;%转换为Kbits
        %初始入网时间
        Time1st(jj)  = mean(Tss);
        %迟入网时间
        TimeFst(jj)  = mean(Tee);
        %网络建立时间
        Timeset(jj)  = mean(Tee)+mean(Tss);
    end
    TimeD2D_(ii)    =mean(TimeD2D);
    Throughput0_(ii)=mean(Throughput0);
    Time1st_(ii)=mean(Time1st);
    TimeFst_(ii)=mean(TimeFst);
    Timeset_(ii)=mean(Timeset);
end

figure;
plot(Nnodes,TimeD2D_,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
grid on 
xlabel('节点数量');
ylabel('端到端时延(ms)');

figure;
plot(Nnodes,Throughput0_,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
grid on 
xlabel('节点数量');
ylabel('网络吞吐量(Kbps)');

figure;
plot(Nnodes,Time1st_,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
grid on 
xlabel('节点数量');
ylabel('初始入网时间(s)');
ylim([0.8*min(Time1st_),1.2*max(Time1st_)]);

figure;
plot(Nnodes,TimeFst_,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
grid on 
xlabel('节点数量');
ylabel('迟入网时间(s)');


figure;
plot(Nnodes,Timeset_,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
grid on 
xlabel('节点数量');
ylabel('网络建立时间(s)');

12_084_m

4.完整算法代码文件

V

基于MATLAB网络控制系统仿真-基于MATLAB网络控制系统仿真.pdf 基于MATLAB网络控制系统仿真 【英文篇名】The simulation of networked control systems based on MATLAB【作者中文名】[url=]许顺孝[/url];【作者英文名】[url=]XU Shun-xiao(Marine Engineering Institute[/url]; [url=]Jimei University[/url]; [url=]Xiamen[/url]; [url=]Fujian 361021[/url]; [url=]China)[/url];【作者单位】[url=]集美大学轮机工程学院[/url];【文献出处】福州大学学报, Journal of Fuzhou University, 编辑部邮箱 2008年 S1期   期刊荣誉:中文核心期刊要目总览  ASPT来源刊  CJFD收录刊【关键词】[url=]网络控制系统[/url]; [url=]ActiveX[/url]; [url=]MATLAB[/url]; [url=]TrueTime[/url];【英文关键词】[url=]networked control system[/url]; [url=]Active X[/url]; [url=]MATLAB[/url]; [url=]TrueTime[/url];【摘要】介绍了基于TrueTime工具包和Active X技术的仿真平台实现方法.前者是根据网络MAC协议对通信延机理进行建模的仿真软件包;后者是针对网络控制系统通信模型仿真困难的缺点而提出,该方法通过ActiveX技术实现了对象模型和控制器通信,为网络控制系统的理论研究提供有效的检验平台.通过对两者的比较指出两种方法的优缺点.【英文摘要】This paper introduces two methods of simulation based on TrueTime and Active X,the first is a soft package which create model according to delay principle of networked MAC protocol,the latter is a new method to deal with the difficulty on the simulation of communication model.This method realizes the communication of the plant model and controller through ActiveX technology,then provides an effective test platform for theory research on NCS.Finally this paper gives the advantage and disadvantage by comparin...
### 如何使用Matlab进行无线自组网(MANET)性能仿真 #### 1. MANET模型建立 为了在MATLAB中创建一个有效的MANET仿真环境,首先要定义网络中的各个组件及其交互方式。这通常涉及到设定节点数量、分布模式以及它们之间的连接特性。 - **始化网络结构**:通过`randperm`函数随机分配各节点的位置坐标来模拟实际场景下的布局情况;也可以依据特定的应用需求定制化布置这些位置。 ```matlab numNodes = 50; % 节点数目 areaSize = [0, 100]; % 定义活动区域大小 nodePositions = unifrnd(areaSize(1), areaSize(2), numNodes, 2); % 随机生成二维平面上的节点位置 ``` - **配置通信链路状态矩阵**:根据距离阈值判断两节点间是否存在直接连通路径,并据此构建邻接表表示当前时刻下所有可能存在的联系关系[^1]。 ```matlab commRange = 25; distMatrix = pdist(nodePositions); linkStateMatrix = squareform(distMatrix <= commRange); ``` #### 2. 参数设置 合理调整影响系统行为的关键参数对于获得有意义的结果至关重要。考虑到不同应用场景的要求差异较大,在此仅列举一些常见的选项供参考: - 数据包传输速率; - 移动速度与方向变化规律; - 发送间隔时间; - 缓存容量限制等。 例如,可以通过如下代码片段指定某些基本属性: ```matlab dataRate = 1e6; % bps mobilityModel = 'RandomWaypoint'; % 或者其他如'ConstantVelocity' txIntervalMean = 5; % 平均发送周期(s),服从指数分布 bufferLimit = 100; % 单位时间内最多缓存的数据帧数 ``` #### 3. 结果分析最佳实践 完成一轮完整的仿真实验之后,应当仔细审查所得出的各项统计数据以便从中提炼有价值的信息。具体而言, - 计算并记录每次迭代过程中涉及的主要效能度量标准,比如端到端、丢包率、吞吐量等等; - 利用可视化手段辅助理解复杂趋势背后隐藏着怎样的逻辑关联性; - 尝试改变输入条件重新执行测试以探索敏感因素的影响范围。 下面给出一段用于汇总统计信息的小例子: ```matlab % 假设已经得到了一系列关于单次通讯会话的表现评价指标... sessionMetrics = struct('latency', [], ... 'lossRatio', [], ... 'throughput', []); for i = 1:length(simulationRuns) sessionMetrics(i).latency = mean(endToEndLatencies{i}); sessionMetrics(i).lossRatio = sum(droppedPackets{i}) / totalTransmittedPackets; sessionMetrics(i).throughput = transmittedBytes{i} ./ simulationDuration; end figure(); subplot(3, 1, 1); boxplot([sessionMetrics.latency]); title('End-to-end Latency Distribution'); ylabel('Time (s)'); subplot(3, 1, 2); histogram(cellfun(@mean, {sessionMetrics.lossRatio})); title('Packet Loss Ratio Histogram'); xlabel('Loss Rate (%)'); ylabel('# Occurrences'); subplot(3, 1, 3); scatter(repmat((1:numTrials)', 1, length(sessionMetrics)), cell2mat({sessionMetrics.throughput}), '.'); title('Throughput Over Multiple Trials'); xlabel('Trial Index'); ylabel('Data Rate (bps)'); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我爱C编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值