GPU和显存的关系

gpu和显存类似于,cpu和内存的关系。显存用来存放模型,数据,显存越大,所能够运行的网络就越大。GPU是计算单元,用来进行数值计算。

神经网络的显存占用包括:

1)模型参数的显存占用:只有有参数的层才会有显存占用,这部分的显存占用和输入无关,模型加载完之后就会占用有参数的层包括:卷积层,全连接层,BatchNorm,Embedding层。无参数的层:激活层sigmoid(sigmoid,relu),池化层,DropOut

2)梯度与动量的显存占用。

3)输入输出占用显存。

 

### 雷达系统中 CUDA GPU 的应用关联 #### 使用GPU加速点云数据处理 在现代自动驾驶车辆其他机器人平台中,激光雷达(LiDAR)提供了高精度的距离测量数据。这些设备通常会产生大量的三维点云数据,这对实时处理提出了挑战。为了应对这一需求,研究人员工程师们转向了图形处理器(GPU),特别是那些支持CUDA编程接口的NVIDIA GPU。 通过采用多线程并行计算方式来同步处理不同射线上的点云信号[^2],可以显著加快数据处理速度而不依赖于耗时的循环迭代过程。这不仅提高了算法执行效率,还使得复杂操作如自适应射线坡度阈值分析成为可能。这种技术特别适用于需要快速响应环境变化的应用场合,比如无人驾驶汽车中的障碍物识别与避让功能。 #### 实现高效的数据传输与预处理 当涉及到大规模点云数据集时,在主机内存与显存之间有效地移动数据变得至关重要。为此,可以直接利用GPU的强大带宽优势来进行高速I/O操作,并借助CUDA库函数完成诸如滤波、降采样等初步准备工作。这样做的好处是可以减少CPU的工作负担并将更多资源留给其他任务,从而整体优化系统的性能表现。 #### 加速机器学习模型推理 除了传统的几何特征提取外,近年来基于深度神经网络的目标检测方法也逐渐应用于激光雷达成像领域。对于这类复杂的AI模型而言,其训练阶段固然重要,但在实际部署过程中更关注的是如何实现实时预测能力。此时,拥有强大算力支撑的GPU便发挥了重要作用:一方面能够承载更大规模参数量级下的前向传播运算;另一方面则可通过TensorRT等工具进一步压缩模型尺寸以适配嵌入式硬件条件限制的同时保持较高的准确性水平。 ```python import torch from torchvision.models.detection import fasterrcnn_resnet50_fpn model = fasterrcnn_resnet50_fpn(pretrained=True).cuda() images = [torch.randn(3, 800, 800).cuda()] # 假设输入图像大小为 (C,H,W)=(3,800,800) with torch.no_grad(): predictions = model(images) print(predictions) ``` 上述代码展示了如何加载预先训练好的Faster R-CNN模型到GPU上运行,并针对一批次图片做出推断结果。值得注意的是,这里假设所有张量都已经被转移到了相同的设备环境中以便充分利用后者所提供的浮点数计算能力低延迟特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值