深度学习中GPU和显存

GPU状态的监控

  • nvidia-smi: 是Nvidia显卡命令行管理套件,基于NVML库,旨在管理和监控Nvidia GPU设备。nvidia-smi命令的输出中最重要的两个指标:显存占用和GPU利用率。
    在这里插入图片描述

显存占用和GPU利用率是两个不一样的东西,显卡是由GPU计算单元和显存等组成的,显存和GPU的关系有点类似于内存和CPU的关系。

  • gpustat:它基于nvidia-smi,可以提供更美观简洁的展示,还可以结合 watch 命令,可以动态实时监控 GPU 的使用情况。直接pip install gpustat即可安装。
    1)gpustat -I
    2)watch --color -n1 gpustat -cpu

显存

显存可以看成是空间,类似于内存。

  • 显存用于存放模型,数据
  • 显存越大,所能运行的网络也就越大

GPU计算单元类似于CPU中的核,用来进行数值计算。衡量计算量的单位是****flop: the number of floating-point multiplication-adds,浮点数先乘后加算一个flop。计算能力越强大,速度越快。衡量计算能力的单位是flops: 每秒能执行的flop数量

1*2+3                  1 flop
1*2 + 3*4 + 4*5        3 flop 

1. 显存分析

1.1 存储指标
1Byte = 8 bit
1K = 1024 Byte
1M = 1024 K
1G = 1024 M
1T = 1024 G

10 K = 10*1024 Byte

除了K、M,G,T等之外,我们常用的还有KB 、MB,GB,TB 。二者有细微的差别。

1Byte = 8 bit
1KB = 1000 Byte
1MB = 1000 KB
1GB = 1000 MB
1TB = 1000 GB

10 KB = 10000 Byte

K、M,G,T是以1024为底,而KB 、MB,GB,TB以1000为底。不过一般来说,在估算显存大小的时候,我们不需要严格的区分这二者。

在深度学习中会用到各种各样的数值类型,数值类型命名规范一般为TypeNum,比如Int64、Float32、Double64

  • Type:有Int,Float,Double等
  • Num: 一般是 8,16,32,64,128,表示该类型所占据的比特数目

常用的数值类型如下图所示(int64 准确的说应该是对应c中的long long类型, long类型在32位机器上等效于int32):
在这里插入图片描述
其中Float32 是在深度学习中最常用的数值类型,称为单精度浮点数,每一个单精度浮点数占用4Byte的显存。

举例来说:有一个1000x1000的矩阵,float32,那么占用的显存差不多就是

1000x1000x4 Byte = 4MB

32x3x256x256的四维数组(BxCxHxW)占用显存为:24M

1.2 神经网络显存占用

神经网络模型占用的显存包括:

  • 模型自身的参数
  • 模型的输出

举例来说,对于如下图所示的一个全连接网络(不考虑偏置项b)
在这里插入图片描述
模型的显存占用包括:

  • 参数:二维数组 W
  • 模型的输出: 二维数组 Y

输入X可以看成是上一层的输出,因此把它的显存占用归于上一层。

这么看来显存占用就是W和Y两个数组?
并非如此!!!

下面细细分析。

1.2.1 参数的显存占用

只有有参数的层,才会有显存占用。这部份的显存占用和输入无关,模型加载完成之后就会占用

  • 有参数的层主要包括:卷积、全连接、BatchNorm、Embedding层… …
  • 无参数的层:多数的激活层(Sigmoid/ReLU)、池化层、Dropout… …

更具体的来说,模型的参数数目(这里均不考虑偏置项b)为:

  • Linear(M->N): 参数数目:M×N
  • Conv2d(Cin, Cout, K): 参数数目:Cin × Cout × K × K
  • BatchNorm(N): 参数数目: 2N
  • Embedding(N,W): 参数数目: N × W

参数占用显存 = 参数数目×n

  • n = 4 :float32

  • n = 2 : float16

  • n = 8 : double64

在PyTorch中,当你执行完model=MyGreatModel().cuda()之后就会占用相应的显存,占用的显存大小基本与上述分析的显存差不多(会稍大一些,因为其它开销)。

1.2.2 梯度与动量的显存占用
  1. 举例来说, 优化器如果是SGD:

W t + 1 = W t − α ∇ F ( W t ) W_{t+1}=W_t-\alpha \nabla F(W_t) Wt+1=WtαF(Wt)

可以看出来,除了保存 W W W之外还要保存对应的梯度 F ( W t ) F(W_t) F(Wt) ,因此显存占用等于参数占用的显存x2。

  1. 如果是带Momentum-SGD

v t + 1 = ρ v t + ∇ F ( W t ) v_{t+1}=\rho v_t+ \nabla F(W_t) vt+1=ρvt+F(Wt)
W t + 1 = W t − α v t + 1 W_{t+1}=W_t-\alpha v_{t+1} Wt+1=Wtαvt+1

这时候还需要保存动量, 因此显存x3

3)如果是Adam优化器,动量占用的显存更多,显存x4

总结一下,模型中与输入无关的显存占用包括:

  • 参数 W
  • 梯度 dW(一般与参数一样)
  • 优化器的动量(普通SGD没有动量,momentum-SGD动量与梯度一样,Adam优化器动量的数量是梯度的两倍)
1.2.3 输入输出的显存占用

这部份的显存主要看输出的feature map 的形状:
在这里插入图片描述
比如卷积的输入输出满足以下关系:
在这里插入图片描述
据此可以计算出每一层输出的Tensor的形状,然后就能计算出相应的显存占用。

模型输出的显存占用,总结如下:

  • 需要计算每一层的feature map的形状(多维数组的形状)
  • 需要保存输出对应的梯度用以反向传播(链式法则)
  • 显存占用与 batch size 成正比
  • 模型输出不需要存储相应的动量信息。

深度学习中神经网络的显存占用,我们可以得到如下公式:

显存占用 = 模型显存占用 + batch_size × 每个样本的显存占用
可以看出显存不是和batch-size简单的成正比,尤其是模型自身比较复杂的情况下:比如全连接很大,Embedding层很大

另外需要注意:

  • 输入(数据,图片)一般不需要计算梯度
  • 神经网络的每一层输入输出都需要保存下来,用来反向传播,但是在某些特殊的情况下,我们可以不要保存输入。比如ReLU,在PyTorch中,使用nn.ReLU(inplace=True) 能将激活函数ReLU的输出直接覆盖保存于模型的输入之中,节省不少显存。
1.3 节省显存的方法

在深度学习中,一般占用显存最多的是卷积等层的输出,模型参数占用的显存相对较少,而且不太好优化。

节省显存一般有如下方法:

  • 降低batch-size
  • 下采样(NCHW -> (1/4)*NCHW)
  • 减少全连接层(一般只留最后一层分类用的全连接层)

2. 计算量分析

计算量的定义,之前已经讲过了,计算量越大,操作越费时,运行神经网络花费的时间越多。

2.1 常用操作的计算量

常用的操作计算量如下:

  • 全连接层:BxMxN , B是batch size,M是输入形状,N是输出形状;
  • 卷积的计算量: B H W C o u t C i n K 2 BHWC_{out}C_{in}K^2 BHWCoutCinK2;
  • BatchNorm 计算量大概是 B H W C × { 4 , 5 , 6 } BHWC\times\{4,5,6\} BHWC×{4,5,6};
  • 池化的计算量: B H W C K 2 BHWCK^2 BHWCK2;
    在这里插入图片描述
  • ReLU的计算量: B H W C BHWC BHWC;
2.2 AlexNet 分析

AlexNet的分析如下图,左边是每一层的参数数目(不是显存占用),右边是消耗的计算资源. 这里某些地方的计算结果可能和上面的公式对不上, 这是因为原始的AlexNet实现有点特殊(在多块GPU上实现的)。
在这里插入图片描述
可以看出:

  • 全连接层占据了绝大多数的参数
  • 卷积层的计算量最大
2.3 减少卷积层的计算量

今年谷歌提出的MobileNet,利用了一种被称为DepthWise Convolution的技术,将神经网络运行速度提升许多,它的核心思想就是把一个卷积操作拆分成两个相对简单的操作的组合。如图所示, 左边是原始卷积操作,右边是两个特殊而又简单的卷积操作的组合(上面类似于池化的操作,但是有权重,下面类似于全连接操作)。
在这里插入图片描述
这种操作使得:

  • 显存占用变多(每一步的输出都要保存)
  • 计算量变少了许多,变成原来的( 1 C o u t + 1 k 2 \frac{1}{C_{out}}+\frac{1}{k^2} Cout1+k21 )(一般为原来的10-15%)
2.4 常用模型 显存/计算复杂度/准确率

去年一篇论文(https://arxiv.org/abs/1605.07678)总结了当时常用模型的各项指标,横坐标是计算复杂度(越往右越慢,越耗时),纵座标是准确率(越高越好),圆的面积是参数数量(不是显存占用),参数量越多,保存的模型文件越大。左上角我画了一个红色小圆,那是最理想的模型:快,准确率高,显存占用小。
在这里插入图片描述

总结

1. 建议
  • 时间更宝贵,尽可能使模型变快(减少flop)
  • 显存占用不是和batch size简单成正比,模型自身的参数及其延伸出来的数据也要占据显存
  • batch size越大,速度未必越快。在你充分利用计算资源的时候,加大batch size在速度上的提升很有限

尤其是batch-size,假定GPU处理单元已经充分利用的情况下:

  • 增大batch size能增大速度,但是很有限(主要是并行计算的优化)
  • 增大batch size能减缓梯度震荡,需要更少的迭代优化次数,收敛的更快,但是每次迭代耗时更长。
  • 增大batch size使得一个epoch所能进行的优化次数变少,收敛可能变慢,从而需要更多时间才能收敛(比如batch_size变成全部样本数目)。

https://zhuanlan.zhihu.com/p/31558973

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Halcon是一种功能强大的计算机视觉软件库,它为用户提供了各种用于图像处理和分析的功能。Halcon深度学习是其最新的功能之一,它利用了深度神经网络来帮助解决图像识别和分类等任务。 深度学习是一种计算密集型的任务,它需要大量的计算资源来训练和运行神经网络模型。而GPU(图形处理单元)是一种专门用于高性能计算的硬件,它在并行计算方面表现出色。相比之下,传统的央处理单元(CPU)在深度学习任务上的计算速度较慢。 Halcon深度学习需要GPU来加速深度学习任务的推理过程,即将训练好的神经网络模型应用于实际的图像处理任务。使用GPU可以显著提高深度学习任务的运行速度,从而实现更高效的图像识别和分类。 值得注意的是,Halcon深度学习GPU的要求并不是非常高,一般来说,拥有一块较新的高端GPU即可满足大部分的深度学习应用需求。因此,使用Halcon深度学习时,如果想要获得更好的性能和效果,建议配备一块支持CUDA或OpenCL的独立显卡。 ### 回答2: Halcon深度学习需要GPU的原因是为了加快深度学习模型的训练和推理过程。深度学习模型具有复杂的网络架构和大量的参数,普通的CPU无法满足其计算需求,而GPU具备更强大的并行计算能力,可以加速模型训练和推理的速度。 在Halcon深度学习GPU可以提供高效的并行计算,同时支持更大规模的模型和数据集。通过利用GPU的并行计算能力,可以加速神经网络复杂的矩阵运算、卷积操作等计算过程,并提高模型在大规模数据集上的训练速度。 此外,Halcon深度学习使用GPU还能够提供更好的实时性能。在很多实时应用场景,需要在短时间内对大量数据进行处理和分析,使用GPU可以在保证准确性的同时提高处理速度,从而满足实时性要求。 综上所述,Halcon深度学习需要GPU是为了提高模型训练和推理速度,支持更大规模的模型和数据集,以及满足实时应用的要求。 ### 回答3: Halcon深度学习需要使用GPU是因为深度学习任务通常需要大量的计算资源来处理复杂的神经网络模型和海量的数据。相比于传统的央处理器(CPU),图形处理器(GPU)具有更优异的并行计算能力,可以同时进行大量的计算操作,提高深度学习任务的处理效率。 使用GPU可以加速深度学习任务的训练和推理过程。在训练神经网络模型时,通过并行计算,GPU可以更快地进行矩阵运算、张量操作和梯度更新等关键计算步骤,加快模型的训练速度。在推理过程GPU可以高效地进行神经网络的前向计算,实时地对输入数据进行处理和分析。 此外,由于深度学习任务的数据量通常较大,需要在GPU的高速内存进行存储和处理,以支持高效的数据并行计算。GPU的高速内存带宽和容量可以提供良好的数据访问速度和存储能力,以满足深度学习任务的需求。 综上所述,使用GPU可以显著提高Halcon深度学习任务的处理效率和性能,加速训练和推理过程。然而,需要注意的是,使用GPU进行深度学习任务需要相应的硬件设备和软件支持,这也可能增加一定的成本和配置要求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值