GCN储备知识

笔记来源如何理解 Graph Convolutional Network(GCN)?

graph的Laplacian矩阵

  • D为度矩阵,A为邻接矩阵
    常规的:L = D-A;
    常用的正则化:L = D-1/2AD-1/2

为什么要用Laplacian矩阵分析Graph?

  • Laplacian矩阵为对称阵,能够进行特征分解(谱分解),能够与GCN的spectral domain对应,;
  • Laplacian矩阵只在一阶相连和对角处有元素;
  • Laplacian矩阵与Laplacian算子类比;

Laplacian矩阵的谱分解

谱分解=特征分解=对角化

  • 由于Laplacian矩阵为半正定对称阵,因此一定可以对角化;(半正定阵一定为对称阵)

  • 其特征值一定非负;

  • 对称阵的特征向量两两正交,所有的单位化特征向量构成正交阵(UUT = E);

  • 故,L= U diag(λ1λ2……λn)UT;(n为graph节点数,L、U为n阶矩阵,λ为L的n个特征值);

  • 由于eiωt为时域Laplacian算子△的特征函数,那么类似的,二维Laplacian算子(Laplacian矩阵)的特征向量构成的矩阵即为△的特征函数,可以定义Graph上的傅里叶变换:
    在这里插入图片描述
    相应的,逆变换则为:
    在这里插入图片描述

  • 由此,得到了Graph的傅里叶变换,并可以根据卷积定理得到Graph的卷积:

    • f的傅里叶变换为
      在这里插入图片描述
    • 类似CNN定义的卷积核h的Graph傅里叶变换的对角阵形式:
      在这里插入图片描述
    • 二者傅里叶变换后的乘积再做逆变换即可得到卷积:
      在这里插入图片描述
    • 值得注意的是,有的论文中的写法为:
      在这里插入图片描述
      其中的“不明操作符”为哈达玛积,向量之间即为内积,矩阵之间即为对应元素的乘积。
      至此便得到了Graph中的 Graph Convolution。
      而需要训练的,也就是其中的h卷积核参数。

    Laplace算子的来源

    参考:https://zhuanlan.zhihu.com/p/50742283
    数学定义:
    在这里插入图片描述
    即所有非混合二阶偏导数的和;
    离散化:
    在这里插入图片描述
    二维形式的Laplace算子:
    在这里插入图片描述
    对于Graph来说,扰动的差值变为:∑Wij(fj - fi)(Wij为i,j间的边权,无权图为1,j为i的邻接点),因此,Graph的Laplacian算子可以定义为:
    在这里插入图片描述
    由于Wij在(i,j)不邻接的情况下为0,因此求和中的j的范围可以忽略。
    继续化简:
    在这里插入图片描述
    对于任意的i都成立,即△f=(W-D)f,因此Laplacian算子定义为Laplacian矩阵(D-W),与上述推导差一个负号,有待后续思考。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值