1. 单一智能体架构
单一智能体架构通过将语言模型与工具和执行逻辑结合,使模型能够通过工具与外部环境交互,以解决复杂任务。
1.1 智能体执行器 (Agent Executor)
智能体执行器是实现智能体架构的核心组件,负责:
- 管理智能体与工具之间的交互
- 解析智能体输出
- 执行工具调用
- 将结果返回给智能体
- 循环直到任务完成
1.2 常见智能体类型
LangChain提供多种智能体类型,根据不同场景选择适当的智能体类型:
-
ReAct 智能体
- 结合推理和行动的智能体
- 适用于需要复杂推理的任务
- 支持链式思考过程
-
OpenAI 函数智能体
- 基于 OpenAI 函数调用能力
- 更易于解析工具调用
- 更高的可靠性和更低的幻觉
-
结构化聊天智能体
- 处理复杂的人类指令
- 增强了聊天功能
- 可以使用多种工具
-
计划与执行智能体
- 先制定计划再执行
- 将任务分解为步骤
- 适用于复杂任务的分解
2. 多智能体编排
多智能体编排通过结合多个智能体的专业知识和能力,以协作方式解决复杂问题。
2.1 多智能体架构模式
-
团队监督模式 (Team Supervisor)
- 一个监督者智能体协调多个专家智能体
- 专家智能体各自解决子问题
- 监督者合并和整理结果
-
经理-员工模式 (Manager-Worker)
- 经理智能体分配任务
- 员工智能体执行具体工作
- 层级结构的工作分配
-
计划执行模式 (Plan Executor)
- 一个智能体制定详细计划
- 另一个智能体执行计划中的步骤
- 适用于需要规划的复杂任务
2.2 智能体监督 (Agent Supervision)
智能体监督是实现多智能体协作的核心机制,包括:
- 任务分配与跟踪
- 结果整合
- 冲突解决
- 错误处理和恢复
2.3 工具共享与通信
多智能体系统中工具共享和通信的关键考虑因素:
- 工具访问权限管理
- 智能体间通信协议
- 中间结果共享机制
- 知识库与上下文管理
3. 智能体与搜索集成
将搜索和检索功能集成到智能体架构中,增强智能体访问和处理信息的能力。
3.1 智能体与RAG结合
检索增强生成(RAG)与智能体结合可以:
- 让智能体主动检索相关信息
- 增加回答的准确性和相关性
- 减少幻觉和错误信息
3.2 实现模式
-
检索作为工具
- 将检索器封装为智能体可用的工具
- 智能体主动决定何时检索信息
-
检索增强上下文
- 在智能体处理前先进行检索
- 将检索结果作为上下文提供给智能体
-
混合方法
- 结合以上两种方法
- 提供基础上下文并允许主动检索
4. 多智能体工作流设计
4.1 工作流设计原则
设计多智能体工作流时应考虑:
- 任务分解粒度
- 智能体角色和专长定义
- 通信频率和方式
- 决策机制
- 错误处理策略
4.2 常见工作流模式
-
研究-规划-执行模式
- 研究智能体收集信息
- 规划智能体制定计划
- 执行智能体实施计划
-
分析-创建-评估模式
- 分析智能体理解问题
- 创建智能体生成解决方案
- 评估智能体验证解决方案
-
协作迭代模式
- 多个智能体并行工作
- 定期同步和更新
- 迭代改进解决方案
4.3 外部工具集成
多智能体系统可以集成的外部工具类型:
- 代码执行环境
- 数据分析工具
- 网络搜索工具
- 文档处理工具
- API 调用工具