AWS Build On 基于知识图谱的推荐模型构建心得

本文介绍了作者参加AWS Build On活动的心得,利用Amazon Neptune构建了一个基于知识图谱的电影推荐系统。通过数据加载、节点配置和Gremlin查询,实现了用户电影推荐和评价预测。实验中遇到的问题强调了耐心的重要性,认为Neptune对于初学者环境搭建友好。
摘要由CSDN通过智能技术生成

前言

因为喜欢刷CSDN的博客,无意间看见了亚马逊云科技在CSDN官网上关于Build On的活动介绍和报名链接。本身对Neptune就比较感兴趣,那当然是赶紧报名啦,非常荣幸能够最终参加Build On。

活动介绍看这里 --> 活动介绍
想要活动当天直播回放的可以看这里 --> 直播回放

活动主题

在这次活动中,我通过 Amazon Neptune 完成了一个电影推荐的实验。整个实验有两个部分,第一个部分通过图神经网络为用户预测他想看的电影的前十名,并且预测他会给出的电影评分;第二部分通过图神经关联预测,得出某一部电影最有可能评价的前十名用户。

实验手册看这里 -->实验手册

  1. 首先第一步就是进入aws的官网,登录控制台,使用root账号登录
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值