机器学习课程总结3--基本卷积神经网络+评价指标+目标检测与Yolo网络

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

目录

一、基本卷积神经网络

1. AlexNet

2. VGG-16

3. 残差网络

二、常用数据集与评价指标

1. 数据集

2. 评价指标

三、目标检测+YOLO (1)

1. 目标检测问题

2. 目标检测技术发展

3. 目标检测基本思想

4. YOLO网络结构

总结


一、基本卷积神经网络

1. AlexNet

   AlexNet网络结构相对简单,使用了8层卷积神经网络,前5层是卷积层,剩下的3层是全连接层,具体如下所示:

      特点: (1) 池化层均采用最大池化; (2) 选用ReLU作为非线性环节激活函数; (3) 网络规模扩大,参数数量接近6000万; (4) 出现“多个卷积层+一个池化层”的结构。

       AlexNet代码复现如下:

import time
import torch
from torch import nn, optim
import torchvision
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 
class AlexNet(nn.Module):
    def __init__(self):
        super(AlexNet, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1, 96, 11, 4), # in_channels, out_channels, kernel_size, stride, padding
            nn.ReLU(),
            nn.MaxPool2d(3, 2), # kernel_size, stride
            # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
            nn.Conv2d(96, 256, 5, 1, 2),
            nn.ReLU(),
            nn.MaxPool2d(3, 2),
            # 连续3个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
            # 前两个卷积层后不使用池化层来减小输入的高和宽
            nn.Conv2d(256, 384, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(384, 384, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(384, 256, 3, 1, 1),
            nn.ReLU(),
            nn.MaxPool2d(3, 2)
        )
         # 这里全连接层的输出个数比LeNet中的大数倍。使用丢弃层来缓解过拟合
        self.fc = nn.Sequential(
            nn.Linear(256*5*5, 4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(4096, 4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            # 输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
            nn.Linear(4096, 10),
        )
 
    def forward(self, img):
        feature = self.conv(img)
        output = self.fc(feature.view(img.shape[0], -1))
        return output

2. VGG-16

    vgg16总共有16层,13个卷积层和3个全连接层,第一次经过64个卷积核的两次卷积后,采用一次pooling,第二次经过两次128个卷积核卷积后,再采用pooling,再重复两次三个512个卷积核卷积后,再pooling,最后经过三次全连接。

     特点:  网络规模进一步增大,参数数量约为1.38亿。由于各卷积层、池化层的超参数基本相同,整体结构呈现出规整的特点。随网络深入,高和宽衰减,通道数增多。代码实现如下所示:

from torch import nn
 
class Vgg16_net(nn.Module):
    def __init__(self):
        super(Vgg16_net, self).__init__()
 
 
        self.layer1=nn.Sequential(
            nn.Conv2d(in_channels=3,out_channels=64,kernel_size=3,stride=1,padding=1), #(32-3+2)/1+1=32   32*32*64
            nn.BatchNorm2d(64),
            #inplace-选择是否进行覆盖运算
            #意思是是否将计算得到的值覆盖之前的值,比如
            nn.ReLU(inplace=True),
            #意思就是对从上层网络Conv2d中传递下来的tensor直接进行修改,
            #这样能够节省运算内存,不用多存储其他变量
 
            nn.Conv2d(in_channels=64,out_channels=64,kernel_size=3,stride=1,padding=1), #(32-3+2)/1+1=32    32*32*64
            #Batch Normalization强行将数据拉回到均值为0,方差为1的正太分布上,
            # 一方面使得数据分布一致,另一方面避免梯度消失。
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
 
            nn.MaxPool2d(kernel_size=2,stride=2)   #(32-2)/2+1=16         16*16*64
        )
 
 
        self.layer2=nn.Sequential(
            nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3,stride=1,padding=1),  #(16-3+2)/1+1=16  16*16*128
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(in_channels=128,out_channels=128,kernel_size=3,stride=1,padding=1), #(16-3+2)/1+1=16   16*16*128
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
 
            nn.MaxPool2d(2,2)    #(16-2)/2+1=8     8*8*128
        )
 
        self.layer3=nn.Sequential(
            nn.Conv2d(in_channels=128,out_channels=256,kernel_size=3,stride=1,padding=1),  #(8-3+2)/1+1=8   8*8*256
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
 
 
            nn.Conv2d(in_channels=256,out_channels=256,kernel_size=3,stride=1,padding=1),  #(8-3+2)/1+1=8   8*8*256
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(in_channels=256,out_channels=256,kernel_size=3,stride=1,padding=1),  #(8-3+2)/1+1=8   8*8*256
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
 
            nn.MaxPool2d(2,2)     #(8-2)/2+1=4      4*4*256
        )
 
        self.layer4=nn.Sequential(
            nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3,stride=1,padding=1),  #(4-3+2)/1+1=4    4*4*512
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3,stride=1,padding=1),   #(4-3+2)/1+1=4    4*4*512
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3,stride=1,padding=1),   #(4-3+2)/1+1=4    4*4*512
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
 
            nn.MaxPool2d(2,2)    #(4-2)/2+1=2     2*2*512
        )
 
        self.layer5=nn.Sequential(
            nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3,stride=1,padding=1),   #(2-3+2)/1+1=2    2*2*512
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3,stride=1,padding=1),  #(2-3+2)/1+1=2     2*2*512
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
 
            nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3,stride=1,padding=1),  #(2-3+2)/1+1=2      2*2*512
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
 
            nn.MaxPool2d(2,2)   #(2-2)/2+1=1      1*1*512
        )
 
 
        self.conv=nn.Sequential(
            self.layer1,
            self.layer2,
            self.layer3,
            self.layer4,
            self.layer5
        )
 
        self.fc=nn.Sequential(
            #y=xA^T+b  x是输入,A是权值,b是偏执,y是输出
            #nn.Liner(in_features,out_features,bias)
            #in_features:输入x的列数  输入数据:[batchsize,in_features]
            #out_freatures:线性变换后输出的y的列数,输出数据的大小是:[batchsize,out_features]
            #bias: bool  默认为True
            #线性变换不改变输入矩阵x的行数,仅改变列数
            nn.Linear(512,512),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
 
            nn.Linear(512,256),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
 
            nn.Linear(256,10)
        )
 
 
    def forward(self,x):
        x=self.conv(x)
        #这里-1表示一个不确定的数,就是你如果不确定你想要reshape成几行,但是你很肯定要reshape成512列
        # 那不确定的地方就可以写成-1
 
        #如果出现x.size(0)表示的是batchsize的值
        # x=x.view(x.size(0),-1)
        x = x.view(-1, 512)
        x=self.fc(x)
        return x

3. 残差网络

    在VGG中,卷积网络达到了19层,在GoogLeNet中,网络史无前例的达到了22层。那么,网络的精度会随着网络的层数增多而增多吗?在深度学习中,网络层数增多一般会伴着下面几个问题:计算资源的消耗;模型容易过拟合;梯度消失/梯度爆炸问题的产生;因此残差网络被提出以解决此类问题。

    残差网络是由一系列残差块组成。残差网络的搭建分为两步:1. 使用VGG公式搭建Plain VGG网络;2. 在Plain VGG的卷积网络之间插入Identity Mapping,注意需要升维或者降维的时候加入 1×1 卷积。详细介绍可参考:http://t.csdn.cn/sBUTh

二、常用数据集与评价指标

1. 数据集

在卷积神经网络训练中,比较经典且常用的数据集包括: MNIST, Fashion-MNIST, PASCAL VOC, MS COCO, 和ImageNet等.

请添加图片描述


2. 评价指标

<1> 算法评估相关概念(TP, FP, FN, TN)

 <2> P-R曲线

 <3> 置信度与准确率

   可以通过改变阈值(也可以看作上下移动蓝色的虚线),来选择让系统识别能出多少个图片,当然阈值的变化会导致Precision与Recall值发生变化。比如,把蓝色虚线放到第一张图片下面,也就是说让系统只识别出最上面的那张飞机图片,那么Precision的值就是100%,而Recall的值则是20%。如果把蓝色虚线放到第二张图片下面,也就是说让系统只识别出最上面的前两张图片,那么Precision的值还是100%,而Recall的值则增长到是40%。

 <4> AP计算

三、目标检测+YOLO (1)

1. 目标检测问题

目标检测是在给定的图片中精确找到物体所在位置,并标注出物体的类别。物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,并且物体还可以是多个类别。

2. 目标检测技术发展 

3. 目标检测基本思想

基本的滑动窗口: 采用滑动窗口的目标检测算法思路非常简单,它将的基本原理就是采用不同大小和比例 (宽高比) 的窗口在整张图片上以设定的步长进行滑动,遍历图片的所有位置, 然后对这些窗口对应的区域做图像分类,这样就可以实现对整张图片的检测了。

 一步法基本思想: 分类问题扩展为回归+分类问题。目标检测|YOLO系列 - 知乎

4. YOLO网络结构

   <1> YOLO网络结构概略图

    <2> YOLO官方的模型结构图

    YOLO网络结构包含24个卷积层和2个全连接层;其中前20个卷积层用来做预训练,后面4个是随机初始化的卷积层,和2个全连接层。

     YOLO的结构非常简单,就是单纯的卷积、池化最后加了两层全连接,从网络结构上看,与前面介绍的CNN分类网络没有本质的区别,最大的差异是输出层用线性函数做激活函数,因为需要预测bounding box的位置(数值型),而不仅仅是对象的概率。所以粗略来说,YOLO的整个结构就是输入图片经过神经网络的变换得到一个输出的张量,如下图所示:

更多详细解释可参考什么是yolo?Yolo算法的网络结构

总结

    以上就是今天要讲的内容,本文继上周内容简单介绍了基本卷积神经网络AlexNet, VGG-16和残差网络,并了解了TP, FP, FN, TN,P-R曲线,AP计算等算法评估方法。此外,又开始初步学习目标检测问题及YOLO网络结构。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值