5.2 LTI系统的输入-输出稳定性

Page1331

考虑通过如式(2.5)导出的方程(5.1) y ( t ) = ∫ 0 t g ( t − τ ) u ( τ ) d t = ∫ 0 t g ( τ ) u ( g − τ ) d t y(t)=\int_{0}^{t} g(t-\tau)u(\tau) dt=\int_{0}^{t} g(\tau)u(g-\tau) dt y(t)=0tg(tτ)u(τ)dt=0tg(τ)u(gτ)dt
描述的SISO线性时不变(LIT)系统。为了能通过该式描述系统,系统需线性、时不变、因果,且t=0时初始松弛。

回顾概念:
单输入单输出(SISO)线性时不变(Linear Time Invariant,LTI)系统:
t = 0 t=0 t=0初始松弛:零状态响应 x ( 0 ) = 0 x(0)=0 x(0)=0 (Page10)
因果:输出不会在外加输入之前出现,即 g ( t ) = 0 , t < 0 g(t)=0,t<0 g(t)=0,t<0
说了半天,就是表述零时刻的状态只受零时刻输入的影响。
对零状态响应提出BIBO稳定

定理5.1 通过式(5.1)描述的SISO系统BIBO稳定,当且仅当 g ( t ) g(t) g(t)在区间 [ 0 , ∞ ) [0,\infin) [0,)上的绝对可积。

说人话:
p : ∣ u ( t ) ∣ ⩽ u m < ∞ , t ⩾ 0 p:\lvert{u(t)}\rvert \leqslant u_{m}<\infin,t\geqslant0 p:u(t)um<,t0
q : g ( t ) < = M < i n f i n i t e q:g(t)<=M< infinite q:g(t)<=M<infinite
p ⇔ q p\Leftrightarrow q pq
证明过程:(1) q ⇒ p q\Rightarrow p qp (2) ¬ q ⇒ ¬ p \neg q \Rightarrow \neg p ¬q¬p
(2)中转化绝对值的构造算是个小技巧。

绝对可积函数未必有界。绝对可积概念之后参考教材后再给出。

定理5.2
若冲击响应使g(t)的系统BIBO稳定,则随着 t → ∞ t \to \infin t:
1.由输入 u ( t ) = a , t ⩾ 0 u(t)=a,t\geqslant 0 u(t)=a,t0引起的输出,趋于 g ^ ( 0 ) ⋅ a \hat g (0) \cdot a g^(0)a
2.由输入 u ( t ) = cos ⁡ ( ω 0 t ) , t ⩾ 0 u(t)=\cos(\omega _{0} t),t\geqslant 0 u(t)=cos(ω0t),t0引起的输出,趋于 ∣ g ^ ( j ω 0 ) ∣ cos ⁡ [ ω 0 t ) + ∠ g ^ ( j ω 0 ) ] \lvert \hat g(j\omega _{0}) \rvert \cos [\omega _{0} t)+\angle \hat g(j\omega _{0})] g^(jω0)cos[ω0t)+g^(jω0)]
3.由输入 u ( t ) = sin ⁡ ( ω 0 t ) , t ⩾ 0 u(t)=\sin(\omega _{0} t),t\geqslant 0 u(t)=sin(ω0t),t0引起的输出,趋于 ∣ g ^ ( j ω 0 ) ∣ sin ⁡ [ ω 0 t ) + ∠ g ^ ( j ω 0 ) ] \lvert \hat g(j\omega _{0}) \rvert \sin [\omega _{0} t)+\angle \hat g(j\omega _{0})] g^(jω0)sin[ω0t)+g^(jω0)]
其中为拉普拉斯变换

定理5.2可理解为BIBO稳定在不同输入下输出的性质。证明过程原文非常详细,主要利用拉普拉斯变换的定义公式: g ^ ( s ) = ∫ τ = 0 ∞ g ( τ ) e − s τ d τ \hat g(s)=\int_{\tau =0}^{\infin}g(\tau)e^{-s\tau}d\tau g^(s)=τ=0g(τ)esτdτ
后面写的有关一段 g ( t ) = 4 e 2 t g(t)=4e^{2t} g(t)=4e2t的情况后面绝对可积再补充,里面还有个 g ^ ( j 2 ) = 1.414 \hat g(j2)=1.414 g^(j2)=1.414,有点儿意思。

定理5.3 正则有理传递函数 g ^ ( s ) \hat g(s) g^(s)为SISO的系统BIBO稳定,当且仅当 g ^ ( s ) \hat g(s) g^(s)的任一极点均具有负实部时,或等价地表述为,位于s的左半平面内。

还是回顾定义:
传递函数正则:有理传递函数表示为 g ^ ( s ) = N ( s ) D ( s ) \hat g(s)=\frac{N(s)}{D(s)} g^(s)=D(s)N(s),deg表示多项式次数,正则: ⇔ d e g D ( s ) ⩾ d e g N ( s ) ⇔ g ^ ( ∞ ) = c \Leftrightarrow degD(s) \geqslant degN(s)\Leftrightarrow \hat g(\infin)=c degD(s)degN(s)g^()=c(c为常数)。(Page33)
极点:若 g ^ ( λ ) = + ∞ / − ∞ \hat g(\lambda)=+\infty / -\infty g^(λ)=+/则称实数或复数 λ \lambda λ为正则传递函数的极点。(Page34)
说人话:
p : u 有 界 p:u有界 p:u
q : λ = e i = q:\lambda=e^{i}= q:λ=ei=

推论5.3 正则有理传递函数为 g ^ ( s ) \hat g(s) g^(s)的SISO系统BIBO稳定,当且仅当其冲击 g ( t ) g(t) g(t)响应随着 t → ∞ t \to \infty t而趋于0。
定理5.M1 冲击响应矩阵为 G ( t ) = [ g i j ( t ) ] G(t)=[g_{ij}(t)] G(t)=[gij(t)]的MIMO系统BIBO稳定,当且仅当每个 g i j ( t ) g_{ij}(t) gij(t) [ 0 , ∞ ) [0,\infty) [0,)区间内绝对可积时。
定理5.M1 正则有理传递矩阵为 G ^ ( t ) = [ g ^ i j ( t ) ] \hat G(t)=[\hat g_{ij}(t)] G^(t)=[g^ij(t)]的MIMO系统BIBO稳定,当且仅当每个 g i j ( t ) g_{ij}(t) gij(t) [ 0 , ∞ ) [0,\infty) [0,)极点都具有负实部时。


  1. [^本文为线性系统学习笔记,教材为Chi-Tsong Chen《线性系统理论与设计》高飞译第四版。] ↩︎

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值