LMF(Low-rank Multimodal Fusion)

博客介绍了低秩多模态融合,提出的模型将权重分解为低秩因子以减少参数数量,利用低秩权重张量和输入张量并行分解计算基于张量的融合,该方法能随模态数量线性缩放,还提及张量表示是多模态融合的成功方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

低秩多模态融合

提出的模型将权重分解为低秩因子,减少了模型中的参数数量。通过利用低秩权重张量和输入张量的并行分解来计算基于张量的融合,可以有效执行这种分解。

这种方法能够随着模态的数量线性缩放

张量表示是多模态融合的一种成功方法。他首先需要将输入表示转化成高维张量,然后将其映射回低维输出向量空间

上面是TFM的思路

而LFM

 

 

 

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值