很多常用术语不太懂,毕竟咱不是这专业的,也算个初学者,总之,菜是原罪,能学就学。
1.官方解释
查看https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data,里面有这样一句话。
For training command outputs and further details please see the training section of Google Colab Notebook.
打开这个notebook(需要点手段,你们懂的)。
总结一下,这个notebook中有关train 的信息。
- actual training is much longer, around 300-1000 epochs, depending on your dataset
--cfg
选择model文件(models/yolo5s.yaml)--data
选择datase文件(data/coco128.yaml)--weights
指定初始权重文件(随机初始化--weights ''
)- All training results are saved to runs/exp0 for the first experiment, then runs/exp1, runs/exp2 etc. for subsequent experiments.(实验发现到10就停下了,之后不断更新exp10)
- 可选tensorboard(还不会用。。。)
- A Mosaic Dataloader is used for training
- View test_batch0_gt.jpg to see test batch 0 ground truth labels.
- View test_batch0_pred.jpg to see test batch 0 predictions.
- Training losses and performance metrics are saved to Tensorboard and also to a runs/exp0/results.txt logfile. results.txt is plotted as results.png after training completes.
然后就没了。。。。。显然对咱深入理解没啥帮助,也就勉强一用。
2.源码阅读
传参都在这了。
if __name__ == '__main__':
check_git_status()
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='', help='hyp.yaml path (optional)')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
parser.add_argument('--rect', action='store_true'