超简单,KNN 近邻算法理解

训练集数据,带标签的。

测试集数据,不带标签。

适用,数据型数据

 

1)计算测试集与与训练集数据的距离,用欧式距离计算(两点间的距离公式,初中那种)。

2)对每个距离进行排序,取K个最近的。(又叫“k邻近”),计算出现频率,取最高的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值