python数据可视化——画板

画板和画纸

plt.figure(), 用画板和画纸来做比喻的话,figure就像画板,是画纸的载体。但是具体作画等操作是在画纸上完成的,在pyplot中画纸对应的概念应该是axes()或者subplot()

plt.figure() 画板

plt.figure(num, figsize, dpi, facecolor, edagecolor, frameon...)

参数解释:

字段备注
num图像编号或名称
figsize画板的宽和高
dpi绘图对象的分辨率
facecolor画板背景颜色
edgecolor画板边框颜色
frameon是否显示边框

下面创建一个背景为亮绿色的画板:

import matplotlib.pyplot as plt
fig=plt.figure(figsize=(4,3),facecolor='lightgreen')
plt.show()

subplot() 画纸

subplot()画纸,会选择自定义尺寸的纸张贴在画板上。

plt.subplot(2,2,1)
plt.subplot(2,2,4)

plt.subplot(2,1,1) 表示的是在画板上创建 2行 2列的画纸 中的 第1个位置。这样就在先前创建的亮绿色画板上,贴上了两块自定义大小的画纸。从下图上看,画纸当然可以在画板的任意位置处贴放。

在这里插入图片描述

subplots() 一同准备出画板与画纸

subplots()会直接初始化出画板与画纸。

fig,ax = plt.subplots(1,1)等价于:

fig = plt.figure()
		+
ax = fig.add_subplot(1,1,1)

使用subplots() 创建上面那样的画板与画纸:

fig, ax = plt.subplots(2,2, 
			figsize=(4,3),facecolor='lightgreen')
plt.show()

axes() 画纸

fig=plt.figure(figsize=(4,3),facecolor='lightgreen')

plt.plot()
#内嵌图1
a1 = plt.axes([0.65, 0.6, 0.2, 0.2])
#内嵌图2
a2 = plt.axes([0.2, 0.6, 0.2, 0.2])
plt.show()

a1 = plt.axes([left, bottom, width, height]);在a1中left和bottom的数值代表figure的百分比,从figure 65%和60%的对应位置开始绘制,宽高是figure的20%。
在这里插入图片描述

参考:
【1】plt.figure的使用
【2】画板画布的理解
【3】subplot与subplots的区别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值