《人工智能实践:Tensorflow笔记》听课笔记14_4.1损失函数

附:课程链接

第四讲.神经网络优化
4.1损失函数

由于个人使用Win7系统,并未完全按照课程所讲,以下记录的也基本是我的结合课程做的Windows系统+PyCharm操作。且本人有python基础,故一些操作可能简略。并未完全按照网课。

记住编写代码时,除注释内容外,字符均使用英文格式。

一、神经元及神经网络基础
1.1943年McCulloch Pitts神经元模型:
在这里插入图片描述
我们以后用到的神经网络都会以这个神经元模型为基本单元,首尾相接,构成神经网络。

其中引入的激活函数f可以有效避免仅使用∑XiWi的纯线性组合,提高了模型的表达力,使模型具有了更好的区分度。常用的激活函数有:relu、sigmoid、tanh等。三者的数学表达式、数学图形、在tensorflow中的表示方式如下:

在这里插入图片描述
2.神经网络的复杂度:可用神经网络的层数和神经网络中待优化参数个数表示。

3.①神经网络层数运算:只计算具有运算能力的层,输入层只把数据传输过来,没有运算,所以计算神经网络层数时,不计算输入层。层数 = 隐藏层的层数n个 + 一个输出层。
总参数的计算:神经网络中所有参数w的个数 + 所有参数b的个数
在这里插入图片描述

上图输入层有三个节点,隐藏层有四个节点,输出层有两个节点。隐藏层是第一层网络,输出层是第二层网络。是两层的神经网络。
上图总参数的计算:3行4列的w + 4个偏置b + 4行2列的w + 2个偏置b,如下:

在这里插入图片描述
二、神经网络的优化(从四个方面理解:损失函数loss、学习率learning_rate、滑动平均ema、正则化regularization)
1.损失函数loss:前向传播的预测值(y)与已知答案(y_)的差距。损失函数的目标就是想找到某条参数,使得推算出的结果y和已知标准答案y_无限接近。也就是它们的差距loss最小。
主流的loss计算有三种:均方误差、自定义、交叉熵等。
均方误差mse(mean squared error):
在这里插入图片描述
对均方误差方法的loss计算的理解,代码举例
题目:预测酸奶日销量y。x1、x2是影响日销量的两个因素。
题目分析:①建模前应提前采集的数据有:一段时间内,每日的x1因素、x2因素和销量y_。采集的数据越多越有利。②在本例中用销量预测产量,最优的产量应该等于销量(产量若少,供不应求;产量若多,卖不完可能赔钱)。③由于目前我们没有数据集,所以要拟造一套数据集X,Y_:利用tensorflow中函数随机生成x1,x2,制造标准答案y_ = x1 + x2,为了更正式,加入随机噪声(-0.05 ~ 0.05)。④把构造的数据喂入神经网络,构建一个一层的神经网络,拟合预测酸奶日销量的函数。

代码验证

"""
    预测多或预测少的影响一样
    导入模块,生成模拟数据集
"""
import tensorflow as tf #导入tensorflow模块,简写为tf
import numpy as np  #导入numpy模块,简写为np。numpy模块是python的科学计算模块
BATCH_SIZE = 8  #BATCH_SIZE表示一次喂入神经网络多少组数据,该数值不可过大
seed = 23455    #设置统一的seed使得随机生成结果一样,方便debug

#基于seed产生随机数
rdm = np.random.RandomState(seed)   #利用随机种子生成数据集
#随机数返回32行2列的矩阵,表示32组0到1之间的随机数x1和x2,作为输入数据集
X = rdm.rand(32,2)  #X为32组,每组两个特征
#用Y_生成训练集对应的标签(正确答案)。取出每组的x1和x2求和,再加上随机噪声。
# 其中.rand函数会生成0到1的前闭后开区间随机数,再除以10,变成0到0.01之间的随机数,减去0.05,变成了-0.05到0.05之间的随机数
Y_ = [[x1 + x2 + rdm.rand()/10.0-0.05] for (x1,x2) in X]   #把(x1 + x2 + b)<1的数据,认为合格,标记为1;其余为不合格,标记为0


"""
    1定义神经网络的输入、参数和输出,定义前向传播过程
"""
x = tf.placeholder(tf.float32,shape=(None,2))
#x为输入的特征,32位浮点型。shape的第一维None表示输入未知组数
#shape的第二维2表示每组有两个特征,即x1和x2
y_ = tf.placeholder(tf.float32,shape=(None,1))
#y_表示标准答案,也就是合格为1、不合格为0的标签。shape第一维None表示未知组数的标签
#shape的第二维为1,是因为每个标签只有一个元素,即合格或不合格的标记

w1 = tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))   #参数,输入是2个特征,故w1为2行,对应X

#矩阵乘法实现前向传播过程描述
y = tf.matmul(x,w1)

"""
    2定义损失函数及反向传播方法
    定义损失函数为MSE,反向传播方法为梯度下降
"""
#反向传播中须指定损失函数loss
loss_mse = tf.reduce_mean(tf.square(y-y_))  #用均方误差计算loss
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss_mse)    #选用梯度下降实现训练过程,学习率填入0.001
#train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(loss) #还可使用Momentum优化方法
#train_step = tf.train.AdamOptimizer(0.01).minimize(loss)  #还可使用Adam优化方法
#三种优化方法选择其一即可

"""
    3生成会话,训练STEPS轮
"""
with tf.Session() as sess:  #生成with结构
    init_op = tf.global_variables_initializer() #初始化所有变量
    sess.run(init_op)

    #训练模型
    STEPS = 20000    #训练20000轮
    for i in range(STEPS):
        start = (i*BATCH_SIZE) % 32
        end = start + BATCH_SIZE
        sess.run(train_step,feed_dict={x:X[start:end],y_:Y_[start:end]})
        #每轮从X的数据集和Y的标签中抽取相应的从start到end个特征和标签,喂入神经网络,用see.run执行训练过程
        if i % 500 == 0:    #每500轮打印一次loss值
            print("After %d training step(s),w1 is: "% (i))
            print(sess.run(w1),"\n")
    #20000轮后,输出训练后的参数取值
    print("Final w1 is:\n",sess.run(w1))    #打印第一层神经网络参数的值

验证结果(仅显示部分):
在这里插入图片描述

可以看到,两个参数x1,x2都向1趋近。

由上述代码可知,本例中神经网络预测模型为w1x1 + w2x2,损失函数均采用均方误差。通过使损失函数值(loss)不断降低,神经网络模型得到最终参数x1 = 0.98,w2 = 1.02,即销售预测结果为y = 0.98 x1 + 1.02x2.因此,销售预测结果和标准答案已经非常接近,说明该神经网络预测酸奶日销量正确****

上例中使用了mse作为损失函数,默认认为销量预测多了或者预测少了,损失是一样的。然而真实情况是,预测多了,损失的是成本;预测少了,损失的是利润。利润和成本往往不相等。在这种情况下使用mse,是无法让利益最大化的。

②此时,我们可以使用自定义损失函数
在这里插入图片描述
对自定义损失方法的loss计算的理解,代码举例
题目:预测酸奶日销量,酸奶成本(COST)1元,酸奶利润(PROFIT)9元
题目分析:①预测少了损失利润9元,大于预测多了损失成本1元。②预测少了损失大,希望拟合的预测函数往多了预测。

代码验证

"""
    酸奶成本1元,酸奶利润9元
    预测少了损失大,故不要预测少,故生成的模型会多预测一些
    导入模块,生成模拟数据集
"""
import tensorflow as tf #导入tensorflow模块,简写为tf
import numpy as np  #导入numpy模块,简写为np。numpy模块是python的科学计算模块
BATCH_SIZE = 8  #BATCH_SIZE表示一次喂入神经网络多少组数据,该数值不可过大
seed = 23455    #设置统一的seed使得随机生成结果一样,方便debug
COST = 1	#成本1元
PROFIT = 9	#利润9元

#基于seed产生随机数
rdm = np.random.RandomState(seed)   #利用随机种子生成数据集
#随机数返回32行2列的矩阵,表示32组0到1之间的随机数x1和x2,作为输入数据集
X = rdm.rand(32,2)  #X为32组,每组两个特征
#用Y_生成训练集对应的标签(正确答案)。取出每组的x1和x2求和,再加上随机噪声。
# 其中.rand函数会生成0到1的前闭后开区间随机数,再除以10,变成0到0.01之间的随机数,减去0.05,变成了-0.05到0.05之间的随机数
Y_ = [[x1 + x2 + rdm.rand()/10.0-0.05] for (x1,x2) in X]   #把(x1 + x2 + b)<1的数据,认为合格,标记为1;其余为不合格,标记为0


"""
    1定义神经网络的输入、参数和输出,定义前向传播过程
"""
x = tf.placeholder(tf.float32,shape=(None,2))
#x为输入的特征,32位浮点型。shape的第一维None表示输入未知组数
#shape的第二维2表示每组有两个特征,即x1和x2
y_ = tf.placeholder(tf.float32,shape=(None,1))
#y_表示标准答案,也就是合格为1、不合格为0的标签。shape第一维None表示未知组数的标签
#shape的第二维为1,是因为每个标签只有一个元素,即合格或不合格的标记

w1 = tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))   #参数,输入是2个特征,故w1为2行,对应X

#矩阵乘法实现前向传播过程描述
y = tf.matmul(x,w1)

"""
    2定义损失函数及反向传播方法
    定义损失函数为MSE,反向传播方法为梯度下降
"""
#反向传播中须指定损失函数loss
loss = tf.reduce_sum(tf.where(tf.greater(y,y_),(y - y_)*COST,(y_ - y)*PROFIT))  #用均方误差计算loss
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)    #选用梯度下降实现训练过程,学习率填入0.001
#train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(loss) #还可使用Momentum优化方法
#train_step = tf.train.AdamOptimizer(0.01).minimize(loss)  #还可使用Adam优化方法
#三种优化方法选择其一即可

"""
    3生成会话,训练STEPS轮
"""
with tf.Session() as sess:  #生成with结构
    init_op = tf.global_variables_initializer() #初始化所有变量
    sess.run(init_op)

    #训练模型
    STEPS = 20000    #训练20000轮
    for i in range(STEPS):
        start = (i*BATCH_SIZE) % 32
        end = start + BATCH_SIZE
        sess.run(train_step,feed_dict={x:X[start:end],y_:Y_[start:end]})
        #每轮从X的数据集和Y的标签中抽取相应的从start到end个特征和标签,喂入神经网络,用see.run执行训练过程
        if i % 500 == 0:    #每500轮打印一次loss值
            print("After %d training step(s),w1 is: "% (i))
            print(sess.run(w1),"\n")
    #20000轮后,输出训练后的参数取值
    print("Final w1 is:\n",sess.run(w1))    #打印第一层神经网络参数的值

验证结果(仅显示部分):
在这里插入图片描述
可以看到,两个参数x1,x2均大于1。

拟合出来的函数y = 1.02x1 + 1.04x2。系数都偏大,都大于用均方误差做损失函数时的系数。模型的确在尽量往多了预测。

(注意:网课中更改了训练次数,从20000改成了3000,但未提及。这里依然保持20000的训练次数)

若将题目改为:酸奶成本9元,利润1元,则验证代码:

COST = 9    #成本9元
PROFIT = 1  #利润1元

验证结果(仅显示部分):
在这里插入图片描述

可以看到,两个参数x1,x2均小于1。
验证结果是销量y = 0.97x1 + 0.98x2。系数偏小,模型在尽量往少了预测。

(注意:网课中更改了训练次数,从20000改成了3000,但未提及。这里依然保持20000的训练次数)

交叉熵ce(Cross Entropy):
交叉熵是表示两个概率分布的距离。交叉熵越大,两个概率分布距离越远,两个概率分布越相异;交叉熵越小,两个概率分布距离越近,两个概率分布越相近。
交叉熵计算公式及举例:
在这里插入图片描述
上图中的例子:
①标准答案的概率分布y_有两个元素分布,表示是二分类。第一个元素是1,表明第一种情况的发生概率是100%;第二个元素是0,表明第二种情况发生的概率是0。
②神经网络预测出了第一种概率分布y1,认为第一种情况的发生概率是60%,第二种情况的发生概率是40%;神经网络又预测出了第二种概率分布y2,认为第一种情况的发生概率是80%,第二种情况的发生概率是20%。
③人为观察y2更接近答案。
④计算机的方法是通过交叉熵的计算公式,y1与标准答案的距离是0.222;y2与标准答案的距离是0.097。可见计算机也认为y2更接近答案。

tensorflow的交叉熵表示方法中,tf.clip_by_value()函数给输入log的值做了限制,保证输入log的值是个有意义的数。表示当y小于10的(-12)次方时,为(-12)次方,防止出现log0的错误;当大于1时,是1。这是因为输入的数均满足概率分布,都是0、1之间的数,不可能大于1。

在实际操作中,为了让前向传播计算出的结果满足概率分布,也就是让推测出的n分类的输出每个都在0、1之间,且n个输出之和为1,引入了softmax()函数
对于n分类,每次会有n个输出,也就是y1,y2,…yn。yn表示第n种情况出现的可能性大小。
这n个输出经过softmax()函数后,会符合概率分布。
在这里插入图片描述
在tensorflow中,一般让模型的输出经过softmax()函数,以获得分类的概率分布,再与标准答案作对比,求出交叉熵,得到损失函数。用以下两句话即可得出:
在这里插入图片描述
其中输出的cem为当前计算出的预测值与标准答案的差距,也就是损失函数。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值