LDA实验报告
- 实验概述
LDA,线性判别式分析(Linear Discriminant Analysis),是模式识别的经典算法。基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后类内方差最小,类间方差最大。
- 实验与思考
- 关于LDA降维效果的思考
左图是单纯最大化类间距离可是并不能把红蓝两类很好的区分开来,注意这时候w和(m1−m2)是平行的。
右图则是使用LDA降维的结果。
四维降到一维
四维降到二维
- LDA直线的斜率为最大的特征值对应的特征向量w的转置,而截距随意,垂直于LDA的直线’ 能够将两堆点进行分类,截距通过各堆点与垂足的直线截距计算出范围,然后便可以随机生成一个适合的截距。
- LDA不适合对非正态分布样本进行降维。
上图中红色区域表示一类样本,蓝色区域表示另一类,由于是2类,所以最多投影到1维上。不管在直线上怎么投影,都难使红色点和蓝色点内部凝聚,类间分离。如果样本数据由独立非高斯分布的隐含因子产生,隐含因子个数等于特征数,比如说信号这样的数据,就可以用ICA。
实验代码
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import random
# 计算均值,要求输入数据为numpy的矩阵格式,行表示样本数,列表示特征
def meanX(data):
return np.mean(data, axis=0)
# axis=0表示按照列来求均值,如果输入list,则axis=1
# 计算类内离散度矩阵子项si
def compute_si(xi):
n = xi.shape[0]
ui = meanX(xi)
si = 0
for i in range(0, n):
si = si + (xi[i, :] - ui).T * (xi[i, :] - ui)
return si
# 计算类间离散度矩阵Sb
def compute_Sb(x1, x2):
dataX = np.vstack((x1, x2))
u1 = meanX(x1)
u2 = meanX(x2)
u = meanX(dataX)
Sb = (u-u1).T * (u-u1) + (u-u2).T * (u-u2)
return Sb
def LDA(x1, x2):
s1 = compute_si(x1)
s2 = compute_si(x2)
n1 = len(s1)
n2 = len(s2)
Sw = (n1*s1+n2*s2)/(n1+n2)
Sb = compute_Sb(x1, x2)
# 求最大特征值对应的特征向量
eig_value, vec = np.linalg.eig(np.mat(Sw).I * Sb) # 特征值和特征向量
index_vec = np.argsort(-eig_value) # 对eig_value从大到小排序,返回索引
eig_index = index_vec[:1] # 取出最大的特征值的索引
w = vec[:, eig_index] # 取出最大的特征值对应的特征向量
return w
def createDataSet():
X1 = np.mat(np.random.random((10, 2)) * 10 + 15) # 类别A
X2 = np.mat(np.random.random((10, 2)) * 10 + 2) # 类别B
return X1, X2
def plotFig(data1, data2, k):
fig = plt.figure(figsize=(5, 5))
plt.ylim(0, 30)
plt.xlim(0, 30)
ax = fig.add_subplot(111)
x1 = data1[0].tolist()[0]
y1 = data1[1].tolist()[0]
x2 = data2[0].tolist()[0]
y2 = data2[1].tolist()[0]
ax.scatter(x=x1, y=y1, color='red')
ax.scatter(x=x2, y=y2, color='blue')
# 画LDA直线
x = np.linspace(0, 30, 300)
line1 = k*x
plt.plot(x, line1, color="yellow", linewidth=2)
# 画投影点
m = k
b = 0
minb = 0
maxb = 100
xy = data1.T.tolist()
for x0, y0 in xy:
xx = (m*y0+x0-m*b)/(m**2+1)
yy = (m**2*y0+m*x0+b)/(m**2+1)
ax.scatter(xx, yy, color='r')
plt.plot([x0, xx], [y0, yy], color='m')
maxb = min(maxb, y0-(y0-yy)/(x0-xx)*x0)
xy = data2.T.tolist()
for x0, y0 in xy:
xx = (m*y0+x0-m*b)/(m**2+1)
yy = (m**2*y0+m*x0+b)/(m**2+1)
ax.scatter(xx, yy, color='b')
plt.plot([x0, xx], [y0, yy], color='c')
minb = max(minb, y0-(y0-yy)/(x0-xx)*x0)
# 画与LDA直线垂直的直线
line2 = (-1/k)*x+random.uniform(minb, maxb)
plt.plot(x, line2, color="green", linewidth=2)
plt.show()
if __name__ == "__main__":
x1, x2 = createDataSet()
w = LDA(x1, x2)
print('w', w)
plotFig(x1.T, x2.T, w[0, 0]/w[1, 0])
# -*- coding: utf-8 -*-
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
def read_iris():
from sklearn.datasets import load_iris
from sklearn import preprocessing
data_set = load_iris()
data_x = data_set.data
label = data_set.target + 1
preprocessing.scale(data_x, axis=0, with_mean=True,
with_std=True, copy=False)
return data_x, label
# 特征均值,计算每类的均值,返回一个向量
def class_mean(data, label, clusters):
mean_vectors = []
for cl in range(1, clusters+1):
mean_vectors.append(np.mean(data[label == cl, ], axis=0))
# print mean_vectors
return mean_vectors
# 计算类内散度
def within_class_SW(data, label, clusters):
m = data.shape[1]
S_W = np.zeros((m, m))
mean_vectors = class_mean(data, label, clusters)
for cl, mv in zip(range(1, clusters+1), mean_vectors):
class_sc_mat = np.zeros((m, m))
# 对每个样本数据进行矩阵乘法
for row in data[label == cl]:
row, mv = row.reshape(4, 1), mv.reshape(4, 1)
class_sc_mat += (row-mv).dot((row-mv).T)
S_W += class_sc_mat
return S_W
def between_class_SB(data, label, clusters):
m = data.shape[1]
all_mean = np.mean(data, axis=0)
S_B = np.zeros((m, m))
mean_vectors = class_mean(data, label, clusters)
for cl, mean_vec in enumerate(mean_vectors):
n = data[label == cl+1, :].shape[0]
mean_vec = mean_vec.reshape(4, 1) # make column vector
all_mean = all_mean.reshape(4, 1) # make column vector
S_B += n * (mean_vec - all_mean).dot((mean_vec - all_mean).T)
return S_B
def lda():
data, label = read_iris()
clusters = 3
S_W = within_class_SW(data, label, clusters)
S_B = between_class_SB(data, label, clusters)
eig_vals, eig_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B))
for i in range(len(eig_vals)):
eigvec_sc = eig_vecs[:, i].reshape(4, 1)
print('\nEigenvector {}: \n{}'.format(i+1, eigvec_sc.real))
print('Eigenvalue {:}: {:.2e}'.format(i+1, eig_vals[i].real))
eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:, i])
for i in range(len(eig_vals))]
eig_pairs = sorted(eig_pairs, key=lambda k: k[0], reverse=True)
W = np.hstack((eig_pairs[0][1].reshape(4, 1),
eig_pairs[1][1].reshape(4, 1)))
print('Matrix W:\n', W.real)
print(data.dot(W))
return W
def D2_plot_lda():
iris = datasets.load_iris()
X = iris.data
y = iris.target
target_names = iris.target_names
lda = LDA(n_components=2)
Y = lda.fit(X, y).transform(X)
data, labels = read_iris()
ax = plt.subplot(111)
for label, marker, color in zip(range(1, 4), ('^', 's', 'o'), ('red', 'yellow', 'blue')):
plt.scatter(x=Y[:, 0][labels == label],
y=Y[:, 1][labels == label],
marker=marker,
color=color,
alpha=0.5,
)
plt.grid()
plt.show()
def D1_plot_lda():
iris = datasets.load_iris()
X = iris.data
y = iris.target
lda = LDA(n_components=1)
X_r2 = lda.fit(X, y).transform(X)
X_Zreo = np.zeros(X_r2.shape)
for c, i in zip('ryb', [0, 1, 2]):
plt.scatter(X_r2[y == i], X_Zreo[y == i], c=c)
plt.grid()
plt.show()
if __name__ == "__main__":
lda()
D2_plot_lda()
D1_plot_lda()