Logistic回归公式推导和代码实现和Python中的sklearn.linear_model.LogisticRegression 的参数

1,引言

logistic回归是机器学习中最常用最经典的分类方法之一,有人称之为逻辑回归或者逻辑斯蒂回归。虽然他称为回归模型,但是却处理的是分类问题,这主要是因为它的本质是一个线性模型加上一个映射函数Sigmoid,将线性模型得到的连续结果映射到离散型上。它常用于二分类问题,在多分类问题的推广叫softmax。
  本文首先阐述Logistic回归的定义,然后介绍一些最优化算法,其中包括基本的梯度上升法和一个改进的随机梯度上升法,这些最优化算法将用于分类器的训练,最好本文将给出一个Logistic回归的实例,预测一匹病马是否能被治愈。
  在我们的日常生活中遇到过很多最优化问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设计发动机使得油耗最少而功率最大?可见,最优化的作用十分强大,所以此处我们介绍几个最优化算法,并利用它们训练出一个非线性函数用于分类。
  现在假设有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归。利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类,这里的“回归”一词源于最佳拟合,表示要找到最佳拟合参数集。训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法,下面我们首先介绍一下这个二值型输出分类器的数学原理。
那么逻辑回归与线性回归是什么关系呢?
逻辑回归(Logistic Regression)与线性回归(Linear Regression)都是一种广义线性模型(generalized linear model)。逻辑回归假设因变量 y 服从伯努利分布,而线性回归假设因变量 y 服从高斯分布。 因此与线性回归有很多相同之处,去除Sigmoid映射函数的话,逻辑回归算法就是一个线性回归。可以说,逻辑回归是以线性回归为理论支持的,但是逻辑回归通过Sigmoid函数引入了非线性因素,因此可以轻松处理0/1分类问题。

2,Logistic回归的一般过程

  • (1)收集数据:采用任意方法收集数据

  • (2)准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳

  • (3)分析数据:采用任意方法对数据进行分析

  • (4)训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数

  • (5)使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数就可以对这些数值进行简单的回归计算,判定他们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他分析工作。

3,Logistic回归的优缺点

**优点:**计算代码不多,易于理解和实现,计算代价不高,速度快,存储资源低
  **缺点:**容易欠拟合,分类精度可能不高
  **适用数据类型:**数值型和标称型数据

4,基于Logistic回归和Sigmoid函数的分类

**我们想要的函数应该是:能接受所有的输入,然后预测出类型。**例如,在两个类的情况下,上述函数输出0或1。该函数称为海维赛德阶跃函数(Heaviside step function),或者直接称为单位阶跃函数。然而,海维赛德阶跃函数的问题在于:该函数在跳跃点上从0瞬间跳跃到1,这个瞬间跳跃过程有时很难处理。幸好,另一个函数也有类似的性质(可以输出0或者1),且数学上更易处理,这就是Sigmoid函数。Sigmoid函数具体的计算公式如下:在这里插入图片描述
  自变量取值为任意实数,值域[0, 1]
  图5-1给出了Sigmoid函数在不同坐标尺度下的两条曲线图。当x为0时,Sigmoid函数值为0.5。随着x的增大,对应的Sigmoid值将逼近于1;而随着x的减少,Sigmoid值将逼近于0.如果横坐标刻度足够大,Sigmoid函数看起来很像一个阶跃函数。
在这里插入图片描述

**解释Sigmoid函数:**将任意的输入映射到了 [0, 1]区间,我们在线性回归中可以得到一个预测值,再将该值映射到 Sigmoid函数中这样就完成了由值到概率的转换,也就是分类任务。
  因此,为了实现Logistic回归分类器,我们可以在每个特征上都乘以一个回归系数,然后把所有的结果值相加,将这个总和带入Sigmoid函数中,进而得到一个范围在0~1之间的数值。任何大于0.5的数据被分入1类,小于0.5即被归入0类,所以,Logistic回归也可以被看成是一种概率估计。
  确定了分类器的函数形式之后,现在的问题变成了:最佳回归系数是多少?如何确定其大小。

5,基于最优化方法的最佳回归系数确定

Sigmoid函数的输入记为z,由下面公式得到:
在这里插入图片描述

如果采用向量的写法,上述公式可以写成 z = wTx ,它表示将这两个数值向量对应元素相乘,然后全部加起来即得到z值。
在这里插入图片描述
  其中的向量x是分类器的输入数据,向量w也就是我们要找到的最佳参数(系数),从而使得分类器尽可能的准确,为了寻找该最佳参数,需要用到最优化理论的一些知识。
  然后再看看我们的Logistic回归模型的公式:
在这里插入图片描述
  这里假设 W>0,Y与X各维度叠加的图形关系,如下图所示(x为了方便取1维):
在这里插入图片描述
  下面首先学习梯度上升的最优化方法,我们将学习到如何使用该方法求得数据集的最佳参数,接下来,展示如何绘制梯度上升法产生的决策边界图,该图将梯度上升法的分类效果可视化的呈现出来,最后我们将学习随机梯度上升算法,以及如何对其进行修改以获得很好地结果。

  • 可能我们最常听到的是梯度下降算法,它与这里的梯度上升算法是一样的,只是公式中的加法需要变成减法,梯度上升算法用来求函数的最大值,而梯度下降算法是用来求函数的最小值

6,梯度上升法

梯度上升法基于的思想是:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻,如果梯度记为,则函数 f(x,y) 的梯度由下面式子表示:
在这里插入图片描述

这个梯度意味着要沿着x的方向移动在这里插入图片描述
,沿着y方向移动在这里插入图片描述
,其中函数f(x,y)必须要在待计算的点上有定义并且可微,一个具体的函数例子见图5-2:
在这里插入图片描述
  上图中的梯度上升算法沿梯度方向移动了一步,可以看出,梯度算子总是指向函数值增长最快的方向。这里所说的移动方向,而未提到移动量的大小。该量值称为步长,记为。用向量来表示的话,梯度算法的迭代公式如下:
在这里插入图片描述
  该公式将一直被迭代执行,直至达到某个停止条件为止,比如迭代次数达到某个指定值或算法达到某个可以允许的误差范围。
  基于上面的内容,我们来看一个Logistic回归分类器的应用例子,从图5-3可以看到我们采用的数据集。
在这里插入图片描述
梯度上升法的公式推导(LR 损失函数)
  在LR中,应用极大似然估计法估计模型参数,由于Sigmoid函数的特性,我们可以做如下的假设:
在这里插入图片描述

上式即为在已知样本X和参数θ的情况下。样本X属性正类(y=1)和负类(y=0)的条件概率,将两个公式合并成一个,如下:
在这里插入图片描述
  假定样本与样本之间相互独立,那么整个样本集生成的概率即为所有样本生成概率的乘积(也就是n个独立样本出现的似然函数如下):
在这里插入图片描述
  为了简化问题,我们对整个表达式求对数(即为LR 损失函数):
在这里插入图片描述
  满足似然函数(θ)的最大的θ值即时我们需要求解的模型。
  那么梯度上升法就像爬坡一样,一点一点逼近极值,而上升这个动作用数学公式表达即为:
在这里插入图片描述
  其中,α 为步长。

回到Logistic回归问题,我们同样对函数求偏导。在这里插入图片描述
对这个公式进行分解,先看:
在这里插入图片描述
  我们可以看到,对函数求偏导,分解为三部分,然后我们对这三部分分布求导。

其中:
在这里插入图片描述
再由:
在这里插入图片描述

可得:
在这里插入图片描述

接下来:在这里插入图片描述
最后:
在这里插入图片描述
综合三部分即得到:
在这里插入图片描述
  如果上面链式分解不好理解的话,可以看下面直接求导(结果是一样的):
在这里插入图片描述
  注意上面是将梯度上升求最大值,转换为梯度下降了,本质没变。
因此梯度迭代公式为:
在这里插入图片描述
如果为梯度下降,我们注意符号的变化,如下:
在这里插入图片描述

7,训练算法:使用梯度上升找到最佳参数

上图有100个样本点,每个点包含两个数值型特征:X1和X2,在此数据集上,我们将通过使用梯度上升法找到最佳回归系数,也就是拟合出Logistic回归模型的最佳参数。

所以我们的目标:建立分类器,求解出theta参数
  设定阈值,根据阈值判断结果

8 Python中的sklearn.linear_model.LogisticRegression

sklearn.linear_model.LogisticRegression官方API:http://scikitlearn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0,fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None,solver='liblinear', max_iter=100, multi_class='ovr', verbose=0,warm_start=False, n_jobs=1)

ogistic回归(aka logit,MaxEnt)分类器。

在多类情况下,如果将“ multi_class”选项设置为“ ovr”,则训练算法将使用“一对多休息”(OvR)方案;如果将“ multi_class”选项设置为“多项式”,则使用交叉熵损失’。(当前,只有“ lbfgs”,“ sag”,“ saga”和“ newton-cg”求解器支持“多项式”选项。)

该类使用“ liblinear”库,“ newton-cg”,“ sag”,“ saga”和“ lbfgs”求解器实现正则逻辑回归。请注意,默认情况下将应用正则化。它可以处理密集和稀疏输入。使用C排序的数组或包含64位浮点数的CSR矩阵可获得最佳性能;其他任何输入格式将被转换(并复制)。

“ newton-cg”,“ sag”和“ lbfgs”求解器仅支持带有原始公式的L2正则化,不支持正则化。'liblinear’求解器支持L1和L2正则化,仅针对L2罚分采用对偶公式。仅“ saga”求解器支持Elastic-Net正则化。
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
笔记

底层的C实现在拟合模型时使用随机数生成器选择特征。因此,对于相同的输入数据具有略微不同的结果并不罕见。如果发生这种情况,请尝试使用较小的tol参数。

在某些情况下,预测输出可能与独立liblinear的输出不匹配。请参见 叙述文档中与liblinear的区别。

参考文献

L-BFGS-B –大规模约束优化软件
朱次有,理查德·伯德,豪尔赫·诺德达尔和何塞·路易斯·莫拉莱斯。 http://users.iems.northwestern.edu/~nocedal/lbfgsb.html

LIBLINEAR –大型线性分类的库
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

凹陷-马克·施密特(Mark Schmidt),尼古拉斯·勒·鲁(Nicolas Le Roux)和弗朗西斯·巴赫(Francis Bach)
用随机平均梯度最小化有限求和 https://hal.inria.fr/hal-00860051/document

SAGA – Defazio,A.,Bach F.和Lacoste-Julien S.(2014)。
SAGA:一种支持非强凸复合物镜的快速增量梯度方法 https://arxiv.org/abs/1407.0202

于祥富,黄芳兰,林志仁(2011)。双坐标下降
逻辑回归和最大熵模型的方法。机器学习85(1-2)
:41-75。 https://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf

例子

>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import LogisticRegression
>>> X, y = load_iris(return_X_y=True)
>>> clf = LogisticRegression(random_state=0).fit(X, y)
>>> clf.predict(X[:2, :])
array([0, 0])
>>> clf.predict_proba(X[:2, :])
array([[9.8...e-01, 1.8...e-02, 1.4...e-08],
       [9.7...e-01, 2.8...e-02, ...e-08]])
>>> clf.score(X, y)
0.97...

在这里插入图片描述

  • 使用实例sklearn.linear_model.LogisticRegression
    在这里插入图片描述
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值