线性代数(行列式&矩阵&向量)

  • 第一章 行列式

①对角、上(下)三角矩阵: ∣ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ∣ = ∣ a 11 a 12 ⋯ a 1 n 0 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ∣ = ∣ a 11 0 ⋯ 0 a 12 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ a 1 n a 2 n ⋯ a n n ∣ = a 11 a 22 . . . a n n \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} &\cdots & 0 \\ \vdots & \vdots &\ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \\ \end{vmatrix}= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} &\cdots & a_{2n} \\ \vdots & \vdots &\ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \\ \end{vmatrix}=\begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ a_{12} & a_{22} &\cdots & 0 \\ \vdots & \vdots &\ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \\ \end{vmatrix}=a_{11}a_{22}...a_{nn} a11000a22000ann=a1100a12a220a1na2nann=a11a12a1n0a22a2n00ann=a11a22...ann

②斜对角矩阵
: ∣ l 1 l 2 ⋰ l n ∣ = ( − 1 ) n ( n − 1 ) 2 l 1 ⋅ l 2 . . . l n :\begin{vmatrix} & & & l_1 \\ & & l_2 & \\ & ⋰ & & \\ l_n & & & \\ \end{vmatrix}=(-1)^{\frac{n(n-1)}2}l_1·l_2...l_n lnl2l1=(1)2n(n1)l1l2...ln

③范德蒙行列式:
V ( a 1 , a 2 , . . . , a n ) = ∣ 1 1 ⋯ 1 a 1 a 2 ⋯ a n ⋮ ⋮ ⋱ ⋮ a 1 n − 1 a 2 n − 1 ⋯ a n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n ( a i − a j ) V(a_1,a_2,...,a_n)=\begin{vmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 &\cdots & a_n \\ \vdots & \vdots &\ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \\ \end{vmatrix}=\quad \prod_{1≤j<i≤n}(a_i-a_j)\quad V(a1,a2,...,an)=1a1a1n11a2a2n11anann1=1j<in(aiaj)
V ( a 1 , a 2 , . . . , a n ) ≠ 0 V(a_1,a_2,...,a_n)≠0 V(a1,a2,...,an)=0的充要条件是常数 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an两两不相等

④余子式与代数余子式:
D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ D=\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} &\cdots & a_{2n} \\ \vdots & \vdots &\ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} D=a11a21an1a12a22an2a1na2nann

元素 a i j a_{ij} aij的余子式( M i j M_{ij} Mij):把行列式 D D D中元素 a i j a_{ij} aij所在的第 i i i行元素和第 j j j列元素去掉,剩下的 n − 1 n-1 n1行和 n − 1 n-1 n1列按照原来的排列次序构成的 n − 1 n-1 n1阶行列式
元素 a i j a_{ij} aij的代数余子式( A i j A_{ij} Aij): A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij

⑤分块行列式:
∣ A 1 A 2 ⋱ A n ∣ = ∣ A 1 ∣ ⋅ ∣ A 2 ∣ ⋯ ∣ A n ∣ \begin{vmatrix} A_1 & & & \\ & A_2 & & \\ & &\ddots & \\ & & & A_n \\ \end{vmatrix}=|A_1|·|A_2|\cdots|A_n| A1A2An=A1A2An

∣ A C O B ∣ = ∣ A O D B ∣ = ∣ A ∣ ⋅ ∣ B ∣ \begin{vmatrix} A & C \\ O & B \\ \end{vmatrix}=\begin{vmatrix} A & O \\ D & B \\ \end{vmatrix}=|A|·|B| AOCB=ADOB=AB

A , B A,B AB分别是 m m m n n n阶矩阵,则 ∣ O A B O ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ \begin{vmatrix} O & A \\ B & O \\ \end{vmatrix}=(-1)^{mn}|A|·|B| OBAO=(1)mnAB

⑥行列式的降阶性质:
行列式等于行列式某行(或列)元素与其对应的代数余子式之积
D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n ( i = 1 , 2 , . . . , n ) D=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in}(i=1,2,...,n) D=ai1Ai1+ai2Ai2+...+ainAin(i=1,2,...,n)
D = a 1 j A 1 j + a 2 j A 2 j + . . . + a n j A n j ( i = 1 , 2 , . . . , n ) D=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj}(i=1,2,...,n) D=a1jA1j+a2jA2j+...+anjAnj(i=1,2,...,n)

行列式的某行(或列)元素与另一行(或列)对应元素的代数余子式之积的和为零
D = a i 1 A j 1 + a i 2 A j 2 + . . . + a i n A j n = 0 ( i ≠ j ) D=a_{i1}A_{j1}+a_{i2}A_{j2}+...+a_{in}A_{jn}=0(i≠j) D=ai1Aj1+ai2Aj2+...+ainAjn=0(i=j)
D = a 1 i A 1 j + a 2 i A 2 j + . . . + a n i A n j = 0 ( i ≠ j ) D=a_{1i}A_{1j}+a_{2i}A_{2j}+...+a_{ni}A_{nj}=0(i≠j) D=a1iA1j+a2iA2j+...+aniAnj=0(i=j)

一元 n n n次方程 x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 = 0 x^n+a_{n-1}x^{n-1}+...+a_1x+a_0=0 xn+an1xn1+...+a1x+a0=0 n n n个根之和为 − a n − 1 -a_{n-1} an1

⑦计算行列式时,若出现 a i j a_{ij} aij A ∗ A^* A,一般使用如下三个性质:
∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1
∣ A ∣ = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n |A|=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in} A=ai1Ai1+ai2Ai2+...+ainAin
A ∗ = ∣ A ∣ A − 1 A^*=|A|A^{-1} A=AA1

⑧n阶方阵对应的行列式的性质:
∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA
∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB|=|A|·|B| AB=AB( A , B A,B A,B都是 n n n阶方阵)
∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\frac{1}{|A|} A1=A1
∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1

A A A n n n阶非零矩阵,且 A ∗ = A ᵀ A*=Aᵀ A=A(即 a i j = A i j ) a_{ij}=A_{ij}) aij=Aij),则 ∣ A ∣ > 0 |A|>0 A>0

例1:
设 D = ∣ 3 0 4 1 2 3 1 4 0 − 7 8 3 5 3 − 2 2 ∣ 设D=\begin{vmatrix} 3 & 0 & 4 & 1 \\ 2 & 3 & 1 & 4 \\ 0 & -7 & 8 & 3 \\ 5 & 3 & -2 & 2 \\ \end{vmatrix} D=3205037341821432
①求 A 21 + A 22 + A 23 + A 24 A_{21}+A_{22}+A_{23}+A_{24} A21+A22+A23+A24
1 ⋅ A 21 + 1 ⋅ A 22 + 1 ⋅ A 23 + 1 ⋅ A 24 = ∣ 3 0 4 1 1 1 1 1 0 − 7 8 3 5 3 − 2 2 ∣ = 148 1·A_{21}+1·A_{22}+1·A_{23}+1·A_{24}=\begin{vmatrix} 3 & 0 & 4 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & -7 & 8 & 3 \\ 5 & 3 & -2 & 2 \\ \end{vmatrix}=148 1A21+1A22+1A23+1A24=3105017341821132=148

②求 A 31 + A 33 A_{31}+A_{33} A31+A33
1 ⋅ A 31 + 0 ⋅ A 32 + 1 ⋅ A 33 + 0 ⋅ A 34 = ∣ 3 0 4 1 2 3 1 4 1 0 1 0 5 3 − 2 2 ∣ = − 12 1·A_{31}+0·A_{32}+1·A_{33}+0·A_{34}=\begin{vmatrix} 3 & 0 & 4 & 1 \\ 2 & 3 & 1 & 4 \\ 1 & 0 & 1 & 0 \\ 5 & 3 & -2 & 2 \\ \end{vmatrix}=-12 1A31+0A32+1A33+0A34=3215030341121402=12

③求 M 41 + M 42 + M 43 + M 44 M_{41}+M_{42}+M_{43}+M_{44} M41+M42+M43+M44
M 41 + M 42 + M 43 + M 44 = ( − 1 ) ⋅ A 41 + 1 ⋅ A 42 + ( − 1 ) ⋅ A 43 + 1 ⋅ A 44 M_{41}+M_{42}+M_{43}+M_{44}=(-1)·A_{41}+1·A_{42}+(-1)·A_{43}+1·A_{44} M41+M42+M43+M44=(1)A41+1A42+(1)A43+1A44
( − 1 ) ⋅ A 41 + 1 ⋅ A 42 + ( − 1 ) ⋅ A 43 + 1 ⋅ A 44 = ∣ 3 0 4 1 1 1 1 1 0 − 7 8 3 − 1 1 − 1 1 ∣ = − 78 (-1)·A_{41}+1·A_{42}+(-1)·A_{43}+1·A_{44}=\begin{vmatrix} 3 & 0 & 4 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & -7 & 8 & 3 \\ -1 & 1 & -1 & 1 \\ \end{vmatrix}=-78 (1)A41+1A42+(1)A43+1A44=3101017141811131=78

例2: a 1 , a 2 , a 3 为 三 维 列 向 量 , 令 A = ( a 1 , a 2 , a 3 ) , 且 ∣ A ∣ = k a_1,a_2,a_3为三维列向量,令A=(a_1,a_2,a_3),且|A|=k a1a2a3A=(a1a2a3)A=k( k k k为常数),计算行列式 ∣ 2 a 1 , a 2 + 3 a 2 , a 1 + 2 a 2 − a 3 ∣ |2a_1,a2+3a_2,a_1+2a_2-a3| 2a1a2+3a2a1+2a2a3
①. ( 2 a 1 , a 2 + 3 a 2 , a 1 + 2 a 2 − a 3 ) = ( 2 ⋅ a 1 + 0 ⋅ a 2 + 0 ⋅ a 3 , 0 ⋅ a 1 + 1 ⋅ a 2 + 3 ⋅ a 2 , 1 ⋅ a 1 + 2 ⋅ a 2 + ( − 1 ) ⋅ a 3 ) (2a_1,a2+3a_2,a_1+2a_2-a3)=(2·a_1+0·a_2+0·a_3,0·a_1+1·a2+3·a_2,1·a_1+2·a_2+(-1)·a3) (2a1a2+3a2a1+2a2a3)=(2a1+0a2+0a30a1+1a2+3a21a1+2a2+(1)a3)
②. ( 2 a 1 , a 2 + 3 a 2 , a 1 + 2 a 2 − a 3 ) = ( a 1 , a 2 , a 3 ) ( 2 0 1 0 1 2 0 3 − 1 ) (2a_1,a2+3a_2,a_1+2a_2-a3)=(a_1,a_2,a_3)\begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & -1 \\ \end{pmatrix} (2a1,a2+3a2,a1+2a2a3)=(a1,a2,a3)200013121
③. ∣ 2 a 1 , a 2 + 3 a 2 , a 1 + 2 a 2 − a 3 ∣ = ∣ a 1 , a 2 , a 3 ∣ ∣ 2 0 1 0 1 2 0 3 − 1 ∣ = ∣ A ∣ ⋅ ( − 14 ) = − 14 k |2a_1,a2+3a_2,a_1+2a_2-a3|=|a_1,a_2,a_3|\begin{vmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & -1 \\ \end{vmatrix}=|A|·(-14)=-14k 2a1,a2+3a2,a1+2a2a3=a1,a2,a3200013121=A(14)=14k

例3: 设向量组 a 1 , a 2 , b 1 , b 2 a_1,a_2,b_1,b_2 a1a2b1b2为三维列向量,又 A = ( a 1 , a 2 , b 1 ) , B = ( a 1 , a 2 , b 2 ) A=(a_1,a_2,b_1),B=(a_1,a_2,b_2) A=(a1a2b1)B=(a1a2b2),且 ∣ A ∣ = a , ∣ B ∣ = b |A|=a,|B|=b A=aB=b,求 ∣ 2 A + 3 B ∣ |2A+3B| 2A+3B
①. 2 A + 3 B = 2 ( a 1 , a 2 , b 1 ) + 3 ( a 1 , a 2 , b 2 ) = ( 2 a 1 , 2 a 2 , 2 b 1 ) + ( 3 a 1 , 3 a 2 , 3 b 2 ) = ( 5 a 1 , 5 a 2 , 2 b 1 + 3 b 2 ) 2A+3B=2(a_1,a_2,b_1)+3(a_1,a_2,b_2)=(2a_1,2a_2,2b_1)+(3a_1,3a_2,3b_2)=(5a_1,5a_2,2b_1+3b_2) 2A+3B=2(a1a2b1)+3(a1a2b2)=(2a12a22b1)+(3a13a23b2)=(5a15a22b1+3b2)
②. ∣ 5 a 1 , 5 a 2 , 2 b 1 + 3 b 2 ∣ = 25 ∣ a 1 , a 2 , 2 b 1 + 3 b 2 ∣ = 25 ( 2 ⋅ ∣ a 1 , a 2 , b 1 ∣ + 3 ⋅ ∣ a 1 , a 2 , b 2 ∣ ) = 50 ∣ A ∣ + 75 ∣ B ∣ = 50 a + 75 b |5a_1,5a_2,2b_1+3b_2|=25|a_1,a_2,2b_1+3b_2|=25(2·|a_1,a_2,b_1|+3·|a_1,a_2,b_2|)=50|A|+75|B|=50a+75b 5a15a22b1+3b2=25a1a22b1+3b2=25(2a1a2b1+3a1a2b2)=50A+75B=50a+75b

例4: 四阶行列式中,带负号且包含 a 23 a_{23} a23 a 31 a_{31} a31的项为: a 14 a 23 a 31 a 42 a_{14}a_{23}a_{31}a_{42} a14a23a31a42

  • 四阶行列式中,包含 a 23 a_{23} a23 a 31 a_{31} a31的项有: a 12 a 23 a 31 a 44 a_{12}a_{23}a_{31}a_{44} a12a23a31a44 a 14 a 23 a 31 a 42 a_{14}a_{23}a_{31}a_{42} a14a23a31a42
  • 其中,① a 12 a 23 a 31 a 44 a_{12}a_{23}a_{31}a_{44} a12a23a31a44,取列标:2314,它有2个(偶数)逆序数(21、31),因此带正号;
  • a 14 a 23 a 31 a 42 a_{14}a_{23}a_{31}a_{42} a14a23a31a42,取列标:4312,它有5个(奇数)逆序数(43、41、42、31、32),因此带负号

  • 第二章 矩阵

三种初等矩阵:
①初等矩阵 E i , j E_{i,j} Ei,j
{ E i , j A 本 质 上 即 对 调 矩 阵 A 的 第 i , j 行 , 即 第 一 种 初 等 行 变 换 A E i , j 本 质 上 即 对 调 矩 阵 A 的 第 i , j 列 , 即 第 一 种 初 等 列 变 换 \begin{cases} E_{i,j}A本质上即对调矩阵A的第i,j行,即第一种初等行变换 \\ AE_{i,j}本质上即对调矩阵A的第i,j列,即第一种初等列变换 \\ \end{cases} {Ei,jAAijAEi,jAij
∣ E i , j ∣ = − 1 ≠ 0 , 即 E i , j 可 逆 |E_{i,j}|=-1≠0,即E_{i,j}可逆 Ei,j=1=0Ei,j
( E i , j ) − 1 = E i , j (E_{i,j})^{-1}=E_{i,j} (Ei,j)1=Ei,j
( E i , j ) 2 = E (E_{i,j})^2=E (Ei,j)2=E
②初等矩阵 E i ( c ) ( c ≠ 0 ) E_i(c)(c≠0) Ei(c)(c=0)
{ E i ( c ) A 本 质 上 即 矩 阵 A 的 第 i 行 乘 以 非 零 常 数 c , 即 第 二 种 初 等 行 变 换 A E i ( c ) 本 质 上 即 矩 阵 A 的 第 i 列 乘 以 非 零 常 数 c , 即 第 二 种 初 等 列 变 换 \begin{cases} E_i(c)A本质上即矩阵A的第i行乘以非零常数c,即第二种初等行变换 \\ AE_i(c)本质上即矩阵A的第i列乘以非零常数c,即第二种初等列变换 \\ \end{cases} {Ei(c)AAicAEi(c)Aic
∣ E i ( c ) ∣ = c ≠ 0 , 即 E i ( c ) 可 逆 |E_i(c)|=c≠0,即E_i(c)可逆 Ei(c)=c=0Ei(c)
[ E i ( c ) ] − 1 = E i ( 1 c ) [E_i(c)]^{-1}=E_i(\frac{1}{c}) [Ei(c)]1=Ei(c1)
③初等矩阵 E i j ( k ) E_{ij}(k) Eij(k)
{ E i j ( k ) A 本 质 上 即 矩 阵 A 的 第 j 行 的 k 倍 加 到 第 i 行 , 即 第 三 种 初 等 行 变 换 A E i j ( k ) 本 质 上 即 矩 阵 A 的 第 i 列 的 k 倍 加 到 第 j 列 , 即 第 三 种 初 等 列 变 换 \begin{cases} E_{ij}(k)A本质上即矩阵A的第j行的k倍加到第i行,即第三种初等行变换 \\ AE_{ij}(k)本质上即矩阵A的第i列的k倍加到第j列,即第三种初等列变换 \\ \end{cases} {Eij(k)AAjkiAEij(k)Aikj
∣ E i j ( k ) ∣ = 1 ≠ 0 , 即 E i j ( k ) 可 逆 |E_{ij}(k)|=1≠0,即E_{ij}(k)可逆 Eij(k)=1=0Eij(k)
[ E i j ( k ) ] − 1 = E i j ( − k ) [E_{ij}(k)]^{-1}=E_{ij}(-k) [Eij(k)]1=Eij(k)

设A,B分别为m和n阶可逆矩阵,则
( A O O B ) − 1 = ( A − 1 O O B − 1 )                        ( O A B O ) − 1 = ( O B − 1 A − 1 O ) \begin{pmatrix} A & O \\ O & B \\ \end{pmatrix}^{-1}=\begin{pmatrix} A^{-1} & O \\ O & B^{-1} \\ \end{pmatrix} \;\;\;\;\;\;\;\;\;\;\;\begin{pmatrix} O & A \\ B & O \\ \end{pmatrix}^{-1}=\begin{pmatrix} O & B^{-1} \\ A^{-1} & O \\ \end{pmatrix} (AOOB)1=(A1OOB1)(OBAO)1=(OA1B1O)

设 A , B 为 可 逆 矩 阵 , 则 ( A C O B ) − 1 = ( A − 1 − A − 1 C B − 1 O B − 1 ) 设A,B为可逆矩阵,则\begin{pmatrix} A & C \\ O & B \\ \end{pmatrix}^{-1}=\begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \\ \end{pmatrix} AB(AOCB)1=(A1OA1CB1B1)

设 α = ( a 1 a 2 ⋮ a n ) , 则 r ( α ) ≤ 1 ( 若 α = 0 , 则 r ( α ) = 0 ; 若 α ≠ 0 , 则 r ( α ) = 1 ) 设\alpha=\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix},则r(\alpha)≤1(若\alpha=0,则r(\alpha)=0;若\alpha≠0,则r(\alpha)=1) α=a1a2anr(α)1(α=0r(α)=0α=0r(α)=1)

矩阵秩的性质:
设 A 是 n 阶 矩 阵 , 则 r ( A ∗ ) = { n            r ( A ) = n 1            r ( A ) = n − 1 ( n ≥ 2 ) 0            r ( A ) < n − 1 设A是n阶矩阵,则r(A^*)=\begin{cases} n\;\;\;\;\;r(A)=n\\ 1\;\;\;\;\;r(A)=n-1(n≥2) \\ 0\;\;\;\;\;r(A)<n-1 \end{cases} Anr(A)=nr(A)=n1r(A)=n1(n2)0r(A)<n1

设 A 、 B 分 别 为 m × s 、 n × s 矩 阵 , 则 m a x { r ( A ) , r ( B ) } ≤ r ( A B ) ≤ r ( A ) + r ( B ) 设A、B分别为m×s、n×s矩阵,则max\{r(A),r(B)\}≤r\begin{pmatrix} A\\ B\\ \end{pmatrix}≤r(A)+r(B) ABm×sn×smax{r(A)r(B)}r(AB)r(A)+r(B)
或 设 A 、 B 分 别 为 m × s 、 n × s 矩 阵 , 则 m a x { r ( A ) , r ( B ) } ≤ r ( A ∣ B ) ≤ r ( A ) + r ( B ) 或设A、B分别为m×s、n×s矩阵,则max\{r(A),r(B)\}≤r\begin{pmatrix} A |B\\ \end{pmatrix}≤r(A)+r(B) ABm×sn×smax{r(A)r(B)}r(AB)r(A)+r(B)
r ( A O O B ) = r ( A ) + r ( B ) r\begin{pmatrix} A & O \\ O & B \\ \end{pmatrix}=r(A)+r(B) r(AOOB)=r(A)+r(B)

矩阵的幂矩阵:
① 若 ( A 1 ⋱ A s ) , 其 中 A 1 , A 2 , . . . , A s 皆 为 方 阵 , 则 A n = ( A 1 n ⋱ A s n ) ①若\begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_s \\ \end{pmatrix},其中A_1,A_2,...,A_s皆为方阵,则A^n=\begin{pmatrix} A_1^n & & \\ & \ddots & \\ & & A_s^n \\ \end{pmatrix} A1AsA1A2...AsAn=A1nAsn
② 利 用 对 角 化 的 方 法 , 求 出 可 逆 矩 阵 P , 使 得 P − 1 A P = ( λ 1 ⋱ λ m ) , 两 边 n 次 方 , 则 A n = P ( λ 1 n ⋱ λ m n ) P − 1 ②利用对角化的方法,求出可逆矩阵P,使得P^{-1}AP=\begin{pmatrix} λ_1 & & \\ & \ddots & \\ & & λ_m \\ \end{pmatrix},两边n次方,则A^n=P\begin{pmatrix} λ_1^n & & \\ & \ddots & \\ & & λ_m^n \\ \end{pmatrix}P^{-1} P使P1AP=λ1λmnAn=Pλ1nλmnP1

例1:
设n阶矩阵A满足 A 2 + 4 A − 5 E = O A^2+4A-5E=O A2+4A5E=O,求① A − 1 A^{-1} A1 ②求 ( A + 4 E ) − 1 (A+4E)^{-1} (A+4E)1 ( A + E ) − 1 (A+E)^{-1} (A+E)1
A 2 + 4 A − 5 E = O → A ( A + 4 E ) = 5 E → A − 1 = 1 5 ( A + 4 E ) A^2+4A-5E=O → A(A+4E)=5E → A^{-1}=\frac{1}5(A+4E) A2+4A5E=OA(A+4E)=5EA1=51(A+4E)
A 2 + 4 A − 5 E = O → ( A + 4 E ) A = 5 E → ( A + 4 E ) − 1 = 1 5 A A^2+4A-5E=O → (A+4E)A=5E →(A+4E)^{-1}=\frac{1}5A A2+4A5E=O(A+4E)A=5E(A+4E)1=51A
A 2 + 4 A − 5 E = O → ( A + E ) ( A + 3 E ) = 8 E → ( A + E ) − 1 = 1 8 ( A + 3 E ) A^2+4A-5E=O → (A+E)(A+3E)=8E → (A+E)^{-1}=\frac{1}8(A+3E) A2+4A5E=O(A+E)(A+3E)=8E(A+E)1=81(A+3E)

  • 第三章 向量:

设 α = ( a 1 a 2 ⋮ a n ) , 称 a 1 2 + a 2 2 + . . . + a n 2 为 向 量 α 的 模 ( 或 长 度 ) , 记 为 ∣ α ∣ 设\alpha=\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix},称\sqrt{a_1^2+a_2^2+...+a_n^2}为向量\alpha的模(或长度),记为|\alpha| α=a1a2ana12+a22+...+an2 α()α
向量内积运算的性质:
( α , β ) = ( β , α ) = α T β = β T α (\alpha,\beta)=(\beta,\alpha)=\alpha^T\beta=\beta^T\alpha (α,β)=(β,α)=αTβ=βTα
( α , α ) = α T α = ∣ α ∣ 2 , 且 ( α , α ) = 0 的 充 要 条 件 是 α = 0 (\alpha,\alpha)=\alpha^T\alpha=|\alpha|^2,且(\alpha,\alpha)=0的充要条件是\alpha=0 (α,α)=αTα=α2(α,α)=0α=0
( α , k 1 β 1 + k 2 β 2 + . . . + k n β n ) = k 1 ( α , β 1 ) + k 2 ( α , β 2 ) + . . . + k n ( α , β n ) (\alpha,k_1\beta_1+k_2\beta_2+...+k_n\beta_n)=k_1(\alpha,\beta_1)+k_2(\alpha,\beta_2)+...+k_n(\alpha,\beta_n) (α,k1β1+k2β2+...+knβn)=k1(α,β1)+k2(α,β2)+...+kn(α,βn)
若 ( α , β ) = 0 ⇔ a 1 b 1 + a 2 b 2 + . . . + a n b n = 0 , 称 α , β 正 交 , 记 为 α ⊥ β , 特 别 地 , 零 向 量 与 任 何 向 量 正 交 若(\alpha,\beta)=0⇔a_1b_1+a_2b_2+...+a_nb_n=0,称\alpha,\beta正交,记为\alpha⊥\beta,特别地,零向量与任何向量正交 (α,β)=0a1b1+a2b2+...+anbn=0α,βαβ

  1. α 1 , α 2 , ⋯ , α n α_1,α_2,⋯,α_n α1α2αn为向量组,称 k 1 α 1 , k 2 α 2 , ⋯ , k n α n k_1α_1,k_2α_2,⋯,k_nα_n k1α1k2α2knαn为向量组 α 1 , α 2 , ⋯ , α n α_1,α_2,⋯,α_n α1α2αn的线性组合。
  2. α 1 , α 2 , ⋯ , α n α_1,α_2,⋯,α_n α1α2αn为向量组,b为一个向量,若存在一组数 k 1 , k 2 , . . . , k n k_1,k_2,...,k_n k1k2...kn,使得 b = k 1 α 1 + k 2 α 2 + ⋯ + k n α n b=k_1α_1+k_2α_2+⋯+k_nα_n b=k1α1+k2α2++knαn称向量b可由向量组 α 1 , α 2 , ⋯ , α n α_1,α_2,⋯,α_n α1α2αn线性表示
  3. 一个向量线性相关 ⇔ 该向量为零向量。
  4. 两个向量线性相关 ⇔ 两个向量成比例。
  5. 向量组 A : α 1 , α 2 , ⋯ , α n A:α_1,α_2,⋯,α_n Aα1α2αn线性相关 ⇔ r ( A ) < n r(A)<n r(A)<n ⇔ A中至少有一个向量可由其余向量线性表示。
  6. 向量组 A : α 1 , α 2 , ⋯ , α n A:α_1,α_2,⋯,α_n Aα1α2αn本身为极大线性无关组(即A线性无关) ⇔ r ( A ) = n r(A)=n r(A)=n ⇔ A的任意一个部分向量组线性无关。
  7. 令向量组 A : α 1 , α 2 , ⋯ , α n ; B : α 1 , α 2 , ⋯ , α n , b A:α_1,α_2,⋯,α_n;B:α_1,α_2,⋯,α_n,b Aα1α2αnBα1α2αnb,则向量组A,B的秩有两种情形:
    情形一: r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B) ⇔ b可由 α 1 , α 2 , ⋯ , α n α_1,α_2,⋯,α_n α1α2αn线性表示。
    情形二: r ( A ) + 1 = r ( B ) r(A)+1=r(B) r(A)+1=r(B) ⇔ b不可由 α 1 , α 2 , ⋯ , α n α_1,α_2,⋯,α_n α1α2αn线性表示。
  8. 设n维列向量组 α 1 , α 2 , ⋯ , α m ( m < n ) α_1,α_2,⋯,α_m (m<n) α1α2αm(m<n)线性无关,则n维列向量组 β 1 , β 2 , ⋯ , β m β_1,β_2,⋯,β_m β1β2βm线性无关
    ⇔ 矩阵 A = ( α 1 , α 2 , ⋯ , α m ) A=(α_1,α_2,⋯,α_m) A=(α1α2αm)与矩阵 B = ( β 1 , β 2 , ⋯ , β m ) B=(β_1,β_2,⋯,β_m) B=(β1β2βm)等价。
  9. 设A为n阶矩阵,则行列式 ∣ A ∣ = 0 |A|=0 A=0 ⇔ A中必有一行(列)为其余各行(列)的线性组合。

例1: α 1 , α 2 , α 3 α_1,α_2,α_3 α1α2α3线性无关,判断 β 1 = α 1 + 2 α 2 , β 2 = α 2 + α 3 , β 3 = α 1 − α 2 + 4 α 3 β_1=α_1+2α_2,β_2=α_2+α_3,β_3=α_1-α_2+4α_3 β1=α1+2α2β2=α2+α3β3=α1α2+4α3的线性相关性
方法一:定义法
k 1 ( α 1 + 2 α 2 ) + k 2 ( α 2 + α 3 ) + k 3 ( α 1 − α 2 + 4 α 3 ) = 0 k_1(α_1+2α_2)+k_2(α_2+α_3)+k_3(α_1-α_2+4α_3)=0 k1(α1+2α2)+k2(α2+α3)+k3(α1α2+4α3)=0,即 ( k 1 + k 3 ) α 1 + ( 2 k 1 + k 2 − k 3 ) α 2 + ( k 2 + 4 k 3 ) α 3 = 0 (k_1+k_3)α_1+(2k_1+k_2-k_3)α_2+(k_2+4k_3)α_3=0 (k1+k3)α1+(2k1+k2k3)α2+(k2+4k3)α3=0
因 为 α 1 , α 2 , α 3 线 性 无 关 , 所 以 { k 1 + k 3 = 0 2 k 1 + k 2 − k 3 = 0 k 2 + 4 k 3 = 0            又 因 为 D = ∣ 1 0 1 2 1 − 1 0 1 4 ∣ = 7 ≠ 0 因为α_1,α_2,α_3线性无关,所以\begin{cases} k_1+k_3=0\\ 2k_1+k_2-k_3=0\\ k_2+4k_3=0\\ \end{cases}\;\;\;\;\;又因为D=\begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & -1 \\ 0 & 1 & 4 \\ \end{vmatrix}=7≠0 α1α2α3线k1+k3=02k1+k2k3=0k2+4k3=0D=120011114=7=0

方法二:三秩相等法
( α 1 + 2 α 2 , α 2 + α 3 , α 1 − α 2 + 4 α 3 ) = ( α 1 , α 2 , α 3 ) ( 1 0 1 2 1 − 1 0 1 4 ) (α_1+2α_2,α_2+α_3,α_1-α_2+4α_3)=(α_1,α_2,α_3)\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & -1 \\ 0 & 1 & 4 \\ \end{pmatrix} (α1+2α2α2+α3α1α2+4α3)=(α1α2α3)120011114
因为矩阵可逆,所以 r ( α 1 + 2 α 2 , α 2 + α 3 , α 1 − α 2 + 4 α 3 ) = r ( α 1 , α 2 , α 3 ) r(α_1+2α_2,α_2+α_3,α_1-α_2+4α_3)=r(α_1,α_2,α_3) r(α1+2α2α2+α3α1α2+4α3)=r(α1α2α3)。于是 r ( β 1 , β 2 , β 3 ) = 3 r(β_1,β_2,β_3)=3 r(β1β2β3)=3,即 β 1 , β 2 , β 3 β_1,β_2,β_3 β1β2β3线性无关。
所以上述方程组只有零解,从而向量组 β 1 , β 2 , β 3 β_1,β_2,β_3 β1β2β3线性无关

结论:设 α 1 , α 2 , . . . , α n α_1,α_2,...,α_n α1α2...αn线性无关, β 1 = α 1 + α 2 , β 2 = α 2 + α 3 , . . . , β n = α n + α 1 β_1=α_1+α_2,β_2=α_2+α_3,...,β_n=α_n+α_1 β1=α1+α2β2=α2+α3...βn=αn+α1,则

  • 当n为奇数时,向量组 β 1 , β 2 , . . . , β n β_1,β_2,...,β_n β1β2...βn线性无关
  • 当n为偶数时,向量组 β 1 , β 2 , . . . , β n β_1,β_2,...,β_n β1β2...βn线性相关

例2: 设A为n阶矩阵, α 1 , α 2 , α 3 α_1,α_2,α_3 α1α2α3为向量组且 α 3 α_3 α3为非零向量, A α 1 = α 2 , A α 2 = α 3 , A α 3 = 0 Aα_1=α_2,Aα_2=α_3,Aα_3=0 Aα1=α2Aα2=α3Aα3=0,证明: α 1 , α 2 , α 3 α_1,α_2,α_3 α1α2α3线性无关。

解:令 k 1 α 1 + k 2 α 2 + k 3 α 3 = 0 ⟹ 两 边 左 乘 A k 1 A α 1 + k 2 A α 2 + k 3 A α 3 = 0 k_1α_1+k_2α_2+k_3α_3=0 \overset{两边左乘A}\Longrightarrow k_1Aα_1+k_2Aα_2+k_3Aα_3=0 k1α1+k2α2+k3α3=0Ak1Aα1+k2Aα2+k3Aα3=0
k 1 α 2 + k 2 α 3 = 0 ⟹ 两 边 左 乘 A k 1 A α 2 + k 2 A α 3 = 0 k_1α_2+k_2α_3=0 \overset{两边左乘A}\Longrightarrow k_1Aα_2+k_2Aα_3=0 k1α2+k2α3=0Ak1Aα2+k2Aα3=0
k 1 α 3 = 0 k_1α_3=0 k1α3=0,因为 α 3 α_3 α3为非零向量,所以 k 1 = 0 k_1=0 k1=0
倒推得 k 3 = k 2 = k 1 = 0 k_3=k_2=k_1=0 k3=k2=k1=0,故 α 1 , α 2 , α 3 α_1,α_2,α_3 α1α2α3线性无关

例3: 设A为n阶矩阵, α 1 , α 2 , α 3 α_1,α_2,α_3 α1α2α3为向量组,其中 α 1 ≠ 0 α_1≠0 α1=0,且满足 A α 1 = 2 α 1 , A α 2 = α 1 + 2 α 3 , A α 3 = α 2 + 2 α 3 Aα_1=2α_1,Aα_2=α_1+2α_3,Aα_3=α_2+2α_3 Aα1=2α1Aα2=α1+2α3Aα3=α2+2α3,证明: α 1 , α 2 , α 3 α_1,α_2,α_3 α1α2α3线性无关。

解:由 A α 1 = 2 α 1 , A α 2 = α 1 + 2 α 3 , A α 3 = α 2 + 2 α 3 Aα_1=2α_1,Aα_2=α_1+2α_3,Aα_3=α_2+2α_3 Aα1=2α1Aα2=α1+2α3Aα3=α2+2α3
( 2 E − A ) α 1 = 0 , ( 2 E − A ) α 2 = − α 1 , ( 2 E − A ) α 3 = − α 2 (2E-A)α_1=0,(2E-A)α_2=-α_1,(2E-A)α_3=-α_2 (2EA)α1=0(2EA)α2=α1(2EA)α3=α2
k 1 α 1 + k 2 α 2 + k 3 α 3 = 0 ⟹ 两 边 左 乘 ( 2 E − A ) k 1 ( 2 E − A ) α 1 + k 2 ( 2 E − A ) α 2 + k 3 ( 2 E − A ) α 3 = 0 k_1α_1+k_2α_2+k_3α_3=0 \overset{两边左乘(2E-A)}\Longrightarrow k_1(2E-A)α_1+k_2(2E-A)α_2+k_3(2E-A)α_3=0 k1α1+k2α2+k3α3=0(2EA)k1(2EA)α1+k2(2EA)α2+k3(2EA)α3=0
− k 1 α 1 − k 3 α 2 = 0 ⟹ 两 边 左 乘 ( 2 E − A ) − k 1 ( 2 E − A ) α 1 − k 3 ( 2 E − A ) α 2 = 0 -k_1α_1-k_3α_2=0 \overset{两边左乘(2E-A)}\Longrightarrow -k_1(2E-A)α_1-k_3(2E-A)α_2=0 k1α1k3α2=0(2EA)k1(2EA)α1k3(2EA)α2=0
k 3 α 1 = 0 k_3α_1=0 k3α1=0,因为 α 1 ≠ 0 α_1≠0 α1=0,所以 k 3 = 0 k_3=0 k3=0
倒推得 k 1 = k 2 = k 3 = 0 k_1=k_2=k_3=0 k1=k2=k3=0,故 α 1 , α 2 , α 3 α_1,α_2,α_3 α1α2α3线性无关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值