数学笔记:集合运算性质的证明,有理数集合的性质

在这里插入图片描述
首先看第一个证明,要证明一个结果,常用的方法是看看哪个结果跟这个要证明的结果是等价的
浏览上次的笔记,可以发现:
在这里插入图片描述
也就是说,必须证明
在这里插入图片描述
现在,问题被简化成证明左边是右边的子集,且,右边是左边的子集

要证明左边要是右边的子集,那么左边任意一个元素都必须从属于右边这个集合
所以它证明时,使用了一个任取,这个任取非常关键。

这样,再回顾它的证明过程,思路就清晰的多了。
在这里插入图片描述
这里重要的不是死记住,而是理解证明的思路,无非就是一堆等价中间结果的推导而已
所以数学最重要的就是记住性质,因为数学是非常严格且精密的,性质全记住了,其它证明操作也就是各种性质的推导罢了

那后边这个,我就照猫画虎,自己证明一下试试。
在这里插入图片描述
1,左边是右边的子集,且右边是左边的子集
2,左边任意一个元素必须是右边这个集合的元素
(1)
任取x从属于左边
∵x从属于A交B的余集
∴x不属于A交B
∴x从属于A的余集或x从属于B的余集
∴x从属于A的余集并B的余集
∴左边是右边的子集
(2)
任取x从属于右边
∵x从属于A的余集并B的余集
∴x从属于全集
∴右边范围比左边大
∴证明失败!= =

????what??哪里出了问题?我还是看一下答案吧。。。。
在这里插入图片描述

哦,看到这里我发现,之所以证明不出来,是因为我忘了一个性质:
在这里插入图片描述
而且,我认为A的余集并B的余集就是全集,说明对余集的理解还不够充分。
而且,我的空间想象能力不够,把图像想错了,其实画个图就明白了。
在这里插入图片描述
在这里插入图片描述
发现中间那块儿区域并没有被标注,,,,,,,

然后我检查上一篇博客,发现根本没有记这个公式,第一节视频上也没讲,第二节直接让你用,= =
巧妇难为无米之炊,我还能无中生有乎…我太难了

第二种证明方法:

在这里插入图片描述
X是全集,
X\A 是X减去A(差集)
在这里插入图片描述
全集减去A等于A的余集,所以最后等于A的余集交B的余集,左边等于右边,证明完毕。

然后给出了一个定理

在这里插入图片描述
在这里插入图片描述
这里边用到了上节没讲的重要的规律:

重要规律1

在这里插入图片描述
总结一下就是:
A和B并集的余集,等于A的余集交B的余集
A和B交集的余集,等于A的余集并B的余集

再总结一下就是:
要拆分某个表达式外边的余集符号,就得把里边的每一个都取余集,并且交变并,并变交
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

重要规律2

在这里插入图片描述

有理数集合的性质

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值