首先看第一个证明,要证明一个结果,常用的方法是看看哪个结果跟这个要证明的结果是等价的。
浏览上次的笔记,可以发现:
也就是说,必须证明
现在,问题被简化成证明左边是右边的子集,且,右边是左边的子集
要证明左边要是右边的子集,那么左边任意一个元素都必须从属于右边这个集合
所以它证明时,使用了一个任取,这个任取非常关键。
这样,再回顾它的证明过程,思路就清晰的多了。
这里重要的不是死记住,而是理解证明的思路,无非就是一堆等价中间结果的推导而已。
所以数学最重要的就是记住性质,因为数学是非常严格且精密的,性质全记住了,其它证明操作也就是各种性质的推导罢了。
那后边这个,我就照猫画虎,自己证明一下试试。
1,左边是右边的子集,且右边是左边的子集
2,左边任意一个元素必须是右边这个集合的元素
(1)
任取x从属于左边
∵x从属于A交B的余集
∴x不属于A交B
∴x从属于A的余集或x从属于B的余集
∴x从属于A的余集并B的余集
∴左边是右边的子集
(2)
任取x从属于右边
∵x从属于A的余集并B的余集
∴x从属于全集
∴右边范围比左边大
∴证明失败!= =
????what??哪里出了问题?我还是看一下答案吧。。。。
哦,看到这里我发现,之所以证明不出来,是因为我忘了一个性质:
而且,我认为A的余集并B的余集就是全集,说明对余集的理解还不够充分。
而且,我的空间想象能力不够,把图像想错了,其实画个图就明白了。
发现中间那块儿区域并没有被标注,,,,,,,
然后我检查上一篇博客,发现根本没有记这个公式,第一节视频上也没讲,第二节直接让你用,= =
巧妇难为无米之炊,我还能无中生有乎…我太难了
第二种证明方法:
X是全集,
X\A 是X减去A(差集)
全集减去A等于A的余集,所以最后等于A的余集交B的余集,左边等于右边,证明完毕。
然后给出了一个定理
这里边用到了上节没讲的重要的规律:
重要规律1
总结一下就是:
A和B并集的余集,等于A的余集交B的余集
A和B交集的余集,等于A的余集并B的余集
再总结一下就是:
要拆分某个表达式外边的余集符号,就得把里边的每一个都取余集,并且交变并,并变交