1.放大和设置长宽比
figsize可以设置图像的长宽比例,dpi设置值越大图像越大,反之越小,也不会失真
plt.figure(figsize=(20,10),dpi=50)
from matplotlib import pyplot as plt # 导入pyplot
x = range(2, 26, 2)
y = [15, 13, 14.5, 17, 20, 25, 26, 27, 22, 18, 15, 18]
# figsize可以设置图像的长宽比例,dpi设置值越大图像越大,反之越小,也不会失真
plt.figure(figsize=(20,10),dpi=50)
# 绘图
plt.plot(x, y)
# 展示图形
plt.show()
2.保存图片
plt.savefig(“./t1.png”)
from matplotlib import pyplot as plt # 导入pyplot
x = range(2, 26, 2)
y = [15, 13, 14.5, 17, 20, 25, 26, 27, 22, 18, 15, 18]
# figsize可以设置图像的长宽比例,dpi设置值越大图像越大,反之越小,也不会失真
plt.figure(figsize=(20,10),dpi=50)
# 绘图
plt.plot(x, y)
plt.savefig("./t1.png")
# 展示图形
plt.show()
3.设置步长
plt.xticks(range(0, 26)) #0-26,步长为1
plt.yticks(range(0, 26)) #0-26,步长为1
plt.yticks(range(0, 26,2)) #0-26,步长为2
from matplotlib import pyplot as plt # 导入pyplot
x = range(2, 26, 2)
y = [15, 13, 14.5, 17, 20, 25, 26, 27, 22, 18, 15, 18]
# figsize可以设置图像的长宽比例,dpi设置值越大图像越大,反之越小,也不会失真
plt.figure(figsize=(20,10),dpi=50)
# 绘图
plt.plot(x, y)
# 设置x轴的刻度,按照我想要的刻度画图
# plt.xticks(x)
plt.xticks(range(0, 26)) #0-26,步长为1
#plt.yticks(range(0, 26)) #0-26,步长为1
plt.yticks(range(0, 26,2)) #0-26,步长为2
# 保存
plt.savefig("./t1.png")
# 展示图形
plt.show()
4.坐标轴更密集些
_xtick_tables = [i/2 for i in range(4,49)]
plt.xticks(_xtick_tables)
from matplotlib import pyplot as plt # 导入pyplot
x = range(2, 26, 2)
y = [15, 13, 14.5, 17, 20, 25, 26, 27, 22, 18, 15, 18]
# figsize可以设置图像的长宽比例,dpi设置值越大图像越大,反之越小,也不会失真
plt.figure(figsize=(20,10),dpi=50)
# 绘图
plt.plot(x, y)
# 设置x轴的刻度,按照我想要的刻度画图
# plt.xticks(x)
#plt.xticks(range(0, 26)) #0-26,步长为1
#plt.yticks(range(0, 26)) #0-26,步长为1
#plt.yticks(range(0, 26,2)) #0-26,步长为2
#变更密集些
_xtick_tables = [i/2 for i in range(4,49)]
plt.xticks(_xtick_tables)
# 保存
plt.savefig("./t1.png")
# 展示图形
plt.show()