一个点绕另一个点旋转之后的坐标计算

本文介绍了一种基于极坐标原理的点绕指定中心旋转的数学计算方法,并提供了具体的坐标转换公式及实现代码。通过该方法可以方便地计算出点绕原点旋转后的坐标位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
p点绕原点旋转角度Q,求p1坐标;
采用极坐标的方法求解
对于p点:
x = r * cos(a);
y = r * sin(a);
对于p1点:
x1 = r * cos(a+Q)= r * [cosacosQ - sinasinQ] = xcosQ - ysinQ;
y1 = r * sin(a+Q) = r * [sinacosQ + sinQcosa] = ycosQ + xsinQ;

在这里插入图片描述
x1 = r * cos(a+Q)= r * [cosacosQ - sinasinQ] = xcosQ - ysinQ + x2;
y1 = r * sin(a+Q) = r * [sinacosQ + sinQcosa] = ycosQ + xsinQ + y2;

// 返回点p以点o为圆心逆时针旋转alpha(单位:弧度)后所在的位置 
POINT rotate(POINT o,double alpha,POINT p) 
{ 
	POINT tp; 
	p.x-=o.x; 
	p.y-=o.y; 
	tp.x=p.x*cos(alpha)-p.y*sin(alpha)+o.x; 
	tp.y=p.y*cos(alpha)+p.x*sin(alpha)+o.y; 
	return tp; 
} 
在MATLAB中实现一个点旋转,首先需要了解二维和三维空间中旋转的基本变换矩阵。之后,如果要让任意一旋转,可以先将该平移到原,执行旋转操作,然后再平移回原来的位置。以下是二维和三维空间中旋转的基本变换矩阵。 二维旋转: 假设P(x, y)旋转θ度后的新位置为P'(x', y'),则旋转矩阵R为: ``` R = | cos(θ) -sin(θ) | | sin(θ) cos(θ) | ``` 因此,旋转后的坐标可以通过以下公式计算: ``` [x', y'] = [x, y] * R ``` 其中,[x, y]是原始坐标向量,R是旋转矩阵,[x', y']是旋转后的坐标向量。 三维旋转: 在三维空间中,假设z轴旋转P(x, y, z)旋转θ度后的新位置为P'(x', y', z'),则z轴的旋转矩阵Rz为: ``` Rz = | cos(θ) -sin(θ) 0 | | sin(θ) cos(θ) 0 | | 0 0 1 | ``` 同样地,如果需要任意轴旋转,可以使用相应的旋转矩阵。 任意旋转: 假设PO(a, b)旋转θ度,可以将P先平移到原,然后旋转,最后平移回原来的位置。具体步骤如下: 1. 平移P,使得O变为原: P' = P - O 2. 新的原旋转P': P'' = P' * R 3. 将旋转后的平移回原来的位置: P''' = P'' + O 在MATLAB中实现这个过程,你可以编写一个函数来完成这一操作,例如: ```matlab function newPoint = rotatePointAroundPoint(point, center, angle) % point: 需要旋转,例如[px; py] % center: 旋转中心,例如[cx; cy] % angle: 旋转角度,以度为单位 % newPoint: 旋转后的新坐标 % 平移到原 translatedPoint = point - center; % 计算二维旋转矩阵 theta = angle * pi / 180; % 将角度转换为弧度 R = [cos(theta) -sin(theta); sin(theta) cos(theta)]; % 旋转 rotatedPoint = R * translatedPoint; % 平移回原位置 newPoint = rotatedPoint + center; end ``` 使用这个函数,你可以通过传入旋转中心和旋转角度来得到旋转后的坐标
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

<( ̄︶ ̄)Okay.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值