小试牛刀,AI技术实现高效地解析和转换多种文档格式

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️
🐴作者:秋无之地

🐴简介:CSDN爬虫、后端、大数据、人工智能领域创作者。目前从事python全栈、爬虫和人工智能等相关工作,主要擅长领域有:python全栈、爬虫、大数据开发、人工智能等。

🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、留言💬、关注🤝,关注必回关

前言:

AI在IT领域中的应用已成趋势,IT从业者们站在这风暴之眼,面临着一个尖锐问题:AI 是否会成为 “职业终结者”?有人担忧 AI 将取代 IT 行业的大部分工作,也有人坚信 IT 从业者的专业技能与创新思维无可替代。

为了证明AI能取代人工操作,今天就来“小试牛刀”,使用AI技术Docling实现高效地解析和转换多种文档格式。

一、Docling的介绍

1、Docling是个啥

在AI大模型训练过程中,如何将大量的文档内容高效转换并集成到AI系统中,成为开发者们的一大挑战。

Docling,就是为此而生,它是一个开源的具有多功能的文档解析与转换工具。无论是PDF、Word文档,还是PPT、Excel表格,Docling都能够高效地解析和转换多种文档格式,将文档内容以HTML、Markdown和JSON等格式呈现,并支持OCR识别和表格结构的解析。

当然最重要的是,它可以与主流的生成式AI框架(如LangChain、LlamaIndex等)无缝集成,为AI应用提供强大的文档处理支持。

2、Docling项目

Docling是一个具有19.7k高星开源的项目,可以说是一个被认可的项目

3、Docling优势

它能够处理多种常见文档格式(包括PDF、DOCX、PPTX、XLSX、HTML和Markdown等),并通过简洁易用的CLI工具帮助用户快速转换和解析文档。

此外,Docling原生集成了生成式AI框架,如LangChain和LlamaIndex,使其在AI文档处理方面更具优势。它的智能化处理能力,尤其是在OCR和表格结构识别方面,特别适用于那些需要快速提取信息并进一步处理的场景。

二、Docling主要功能

1、多格式支持,快速转换

Docling支持解析并转换多种文档格式,包括但不限于:

  • ​​​​​​​
  • PDF、DOCX、PPTX、XLSX、HTML、Markdown等主流格式

  • 能够从这些格式中提取内容并导出为HTML、Markdown或JSON,方便与其他系统和应用集成。

2、高级PDF理解

在PDF处理方面具有强大的功能,不仅支持基本的文本提取,还能深入理解文档的页面布局、阅读顺序以及表格结构。

这些高级特性使得它能够处理更为复杂的PDF文档,特别是包含表格和复杂排版的文件。

3、支持OCR与表格结构识别

内置OCR功能,能够识别扫描文档中的文本,帮助用户提取图像中的信息,并且可以准确识别文档中的表格结构并转换为可用的格式,使得数据的处理更加便捷。

4、AI框架集成,智能文档处理

Docling原生集成了LangChain、LlamaIndex等主流生成式AI框架,为AI应用开发提供了完美的支持。

通过这些框架,用户可以更轻松地将文档内容与AI系统连接,并执行智能任务,如信息抽取、内容生成等。

5、简单易用的CLI工具

提供了便捷的命令行界面(CLI)工具及API,开发者可以通过几行代码轻松完成文档格式转换和处理。

无论是批量处理文档,还是自动化脚本的编写,都极大地提升了开发效率。让开发者可以专注于更高层次的AI应用开发。

三、Docling安装与使用

1、安装Docling
pip install docling
2、使用示例:转换PDF文件
from docling.document_converter import DocumentConverter

source = "https://xxx.com/pdf/url"  # PDF path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())

还可以直接从命令行使用 Docling 来转换单个文件(无论是本地文件还是按 URL 文件)或整个目录。

docling https://xxx.com/pdf/url

可以通过参数限制每个文档应允许处理的文件大小和页数。

from pathlib import Path
from docling.document_converter import DocumentConverter

source = "https://xxx.com/pdf/url"
converter = DocumentConverter()
result = converter.convert(source, max_num_pages=100, max_file_size=36975364)

从二进制 PDF 流转换

from io import BytesIO
from docling.datamodel.base_models import DocumentStream
from docling.document_converter import DocumentConverter

buf = BytesIO(your_binary_stream)
source = DocumentStream(name="temp.pdf", stream=buf)
converter = DocumentConverter()
result = converter.convert(source)
3、总结

Docling 是一个强大而灵活的开源工具,它不仅简化了文档的解析与转换,还通过与生成式AI框架的集成,为开发者提供了无限的可能性。

它支持OCR识别、表格结构解析以及与生成式AI框架的深度集成,为开发智能文档应用提供了完美的支持。无论是需要处理大量文档、开发智能文档应用,还是与AI结合进行更深层次的分析,Docling都能大大提升工作效率。

版权声明

本文章版权归作者所有,未经作者允许禁止任何转载、采集,作者保留一切追究的权利。

### Docling DeepSeek 的介绍 #### Docling简介 Docling 是一种专注于自然语言处理 (NLP) 领域的技术平台,旨在帮助开发者快速构建部署文档理解解决方案。该工具集成了先进的机器学习算法来解析、分类以及提取非结构化文本中的信息[^1]。 #### DeepSeek概述 DeepSeek 则是一个更为综合的人工智能搜索引擎框架,不仅支持传统的基于关键词匹配的信息检索方式,还利用深度学习模型实现语义级查询理解响应生成。这使得它能够提供更加精准的结果并适应复杂多变的实际应用场景需求[^2]。 ### 功能特性比较 | 特性 | Docling | DeepSeek | | ------------| | **核心能力** | 主要针对文件内的文字内容做深入分析,如合同审查、法律条文解读等特定领域任务 | 提供广泛的数据源索引服务,适用于多种类型的资料查找 | | **技术基础** | 基于传统 NLP 技术与部分预训练模型 | 运用了最新的神经网络架构来进行端到端的学习 | | **适用场景** | 文档密集型行业(金融、医疗保健),特别是那些需要自动化处理大量纸质或电子版记录的地方 | 广泛应用于互联网搜索、企业内部知识库维护等领域 | ```python # Python伪代码展示如何调用两个API获取结果 import requests def get_docling_result(document_text): response = requests.post('https://api.docling.com/analyze', json={'text': document_text}) return response.json() def get_deepseek_results(query_string): params = {'q': query_string} response = requests.get('https://search.deepseek.net/api/v1/search', params=params) return response.json() ``` 通过上述表格可以看出,在具体应用上两者各有侧重:如果目标是提高某类专业文献的理解效率,则可以选择Docling;而当面临更广泛的搜索需求时,DeepSeek或许会成为更好的选项[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋无之地

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值