Docling:开源的文档解析工具,支持多种格式的解析和转换,可与其他 AI 工具集成

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. Docling 是一个开源的文档解析工具,支持多种格式的文档解析和转换。
  2. 支持高级 PDF 理解、OCR 功能,并且易于与其他 AI 工具集成。
  3. 提供简洁的命令行界面,方便用户快速处理文档。

正文(附运行示例)

Docling 是什么

在这里插入图片描述

Docling 是一个开源的文档解析和转换工具,能高效地将多种格式的文档(包括 PDF、DOCX、PPTX、图片和 HTML)解析,导出为 Markdown 或 JSON 格式。Docling 支持高级 PDF 理解、OCR 功能,能与 LlamaIndex 和 LangChain 等工具集成,增强文档的检索和问答能力。Docling 提供一个简洁的命令行界面,方便用户快速处理文档。

Docling 的主要功能

  • 多格式支持:Docling 能读取和解析多种流行的文档格式,包括 PDF、DOCX、PPTX、图像、HTML、AsciiDoc 和 Markdown,支持将文档导出为 Markdown 和 JSON 格式。
  • 高级 PDF 理解:Docling 具备对 PDF 文档的高级理解能力,包括页面布局、阅读顺序和表格结构的识别。
  • 统一文档表示:基于DoclingDocument格式,Docling 提供一个统一且富有表现力的文档表示格式,表达文档中的文本、表格、图片等内容,及文档的层次结构。
  • OCR 支持:Docling 支持光学字符识别(OCR),能识别扫描 PDF 中的文字,让 Docling 能处理扫描或手写的文档。
  • 工具集成:Docling 易于与 LlamaIndex 和 LangChain 等工具集成,为 RAG(Retrieval-Augmented Generation)/QA(Question Answering)应用提供支持。

Docling 的技术原理

  • 文档解析:Docling 用专门的解析器读取和解析不同格式的文档,将文档内容转换为内部数据结构。
  • 布局和结构识别:对于 PDF 等格式,Docling 基于布局分析技术识别页面上的元素位置和阅读顺序,及表格和文本的结构。
  • 内容提取:Docling 从文档中提取文本、表格、图片等元素,转换为统一的DoclingDocument格式。
  • OCR 技术:对于图像或扫描的 PDF 文档,Docling 用 OCR 技术将图像中的文字转换为机器可读的文本。
  • 数据结构和 JSON 指针DoclingDocument用 JSON 指针引用父项和子项,构建文档的层次结构和内容关系。
  • 输出格式化:将解析后的数据结构格式化为 Markdown 或 JSON,便于进一步的处理和分析。

如何运行 Docling

首先,安装 Docling:

pip install docling

接下来,使用如下代码示例将文档转换为 Markdown 格式:

from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869"  # 可以是本地路径或URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())  # 输出: "## Docling Technical Report[...]"

资源

  1. 项目官网:https://ds4sd.github.io/docling/
  2. GitHub 仓库:https://github.com/DS4SD/docling
  3. arXiv 技术论文:https://arxiv.org/pdf/2408.09869

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

### Docling DeepSeek 的介绍 #### Docling简介 Docling 是一种专注于自然语言处理 (NLP) 领域的技术平台,旨在帮助开发者快速构建部署文档理解解决方案。该工具集成了先进的机器学习算法来解析、分类以及提取非结构化文本中的信息[^1]。 #### DeepSeek概述 DeepSeek 则是一个更为综合的人工智能搜索引擎框架,不仅支持传统的基于关键词匹配的信息检索方式,还利用深度学习模型实现语义级查询理解响应生成。这使得它能够提供更加精准的结果并适应复杂多变的实际应用场景需求[^2]。 ### 功能特性比较 | 特性 | Docling | DeepSeek | | ------------| | **核心能力** | 主要针对文件内的文字内容做深入分析,如合同审查、法律条文解读等特定领域任务 | 提供广泛的数据源索引服务,适用于多种类型的资料查找 | | **技术基础** | 基于传统 NLP 技术部分预训练模型 | 运用了最新的神经网络架构来进行端到端的学习 | | **适用场景** | 文档密集型行业(金融、医疗保健),特别是那些需要自动化处理大量纸质或电子版记录的地方 | 广泛应用于互联网搜索、企业内部知识库维护等领域 | ```python # Python伪代码展示如何调用两个API获取结果 import requests def get_docling_result(document_text): response = requests.post('https://api.docling.com/analyze', json={'text': document_text}) return response.json() def get_deepseek_results(query_string): params = {'q': query_string} response = requests.get('https://search.deepseek.net/api/v1/search', params=params) return response.json() ``` 通过上述表格可以看出,在具体应用上两者各有侧重:如果目标是提高某类专业文献的理解效率,则可以选择Docling;而当面临更广泛的搜索需求时,DeepSeek或许会成为更好的选项[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值