(我要挑战不用求和符号写文章!)
本文中函数都指一元函数,自变量和因变量都是标量,微分都指常微分。
定义
(线性微分算子):设
为一个微分算子,若对于任意两个函数
、
和常数
、
,该算子满足
,
则称
为线性微分算子。
引理
:
为线性微分算子的充分必要条件为,对于任意的一组函数
和一组常数
(这两个矢量的维数要相同),该算子满足
。
简略的证明:直接令
和
为
维矢量,然后套定义
,可证充分性;用数学归纳法,对
和
的维数进行归纳,可证必要性。
定义
:
。
引理
:设
维矢量
与
无关,
为一个函数列,则
简略的证明:用数学归纳法可证。
引理
:设
为一组关于
的函数,
的维数为
,则微分算子
是线性微分算子。
简略的证明:套用定义
可证。
引理
的推论:设
为
维常矢,则微分算子
是线性微分算子。
引理
(结合律):
。
证明略。
定义
(线性常系数微分算子):符合引理
的推论的线性微分算子称为线性常系数微分算子。
定义
(线性微分方程):设
为一个线性微分算子,则关于函数
的(常)微分方程
称为线性(常)微分方程,其中
为一个函数。
特别地,若
,则该微分方程称为线性齐次微分方程。若
是线性常系数微分算子,则该微分方程称为线性常系数微分方程。
定义
(生成函数):对于数列
,称函数
为该数列的(普通型)生成函数。
(注:这里并没有引入无穷维的向量,实际上
。)
定义
(指数型生成函数):对于数列
,称数列
的(普通型)生成函数为
的指数型生成函数。即
。
引理
(幂函数的微分):设
,则
。
(注:规定负整数的阶乘为无穷大,则当
时
。)
简略的证明:用数学归纳法可证。
引理
(指数型生成函数的微分):若
为数列
的指数型生成函数,则
为数列
的指数型生成函数。
证明:
(定义
)
(引理
)
(引理
)
(引理
)
(引理
的注)
再由定义
可证。
引理
的推论:
。
引理
(结合律):
。
证明略。
定义
(零函数):当自变量取任意值时因变量都取
的函数称为零函数。
引理
:数列
的生成函数为零函数的充分必要条件为对于任意的
有
。
简略的证明:套用定义
和定义
可证充分性;将零函数按Taylor公式展开成幂级数可证必要性。
定义
:
。
引理
(分配律):
。
证明略。
定义
(数列方程):设
为一个未知数列,若函数
中显含该数列的项,则方程
称为关于数列
的数列方程。某个数列,若它对于任意的
满足该方程,则它称为该数列方程的特解,该数列方程的全体特解称为该方程的通解。
定义
(数列的线性相关):若对于一组数列
存在一组不全为
的常数
(
和
维数相同)使得对于任意的
有
,
则称这一组数列线性相关,否则称这一组数列线性无关。
引理
:一组
个数列
线性相关的充分必要条件为,对于任意的
有
。
证明:先证必要性。存在一组不全为
的常数
使得对于任意的
有
(定义
)。
分别令
为
可得
。
令
在第
维上的分量为
,即
,于是
由引理
,该等式的左边实际上等于
。
设矩阵
,则
,且
。
用反证法。假设该行列式的值不为
,即
,则矩阵
可逆。
在等式
两边同时在左边乘
,得
,这与
不全为
矛盾。
所以
。
(充分性我不会证,嘤嘤嘤。)
引理
:设数列方程
(其中
为
维常矢,不全为
)具有一组
个线性无关的特解
,则该数列方程的通解为
,其中
是一组
个任意常数。
证明:先证明数列
(其中
)必然是原数列方程的特解。
代入原数列方程的左边可得
(引理
)
(定义
)
。
由定义
,数列
是原数列方程的特解。
然后证明原数列方程不存在一个特解
,使得不存在一组常数
使得对于任意的
有
。
用反证法。假设存在这样的一个特解,记作
,则根据定义
,一组数列
线性无关。令矩阵
,则根据引理
,
可逆。
由于这一组数列都是原数列方程的特解,由定义
可知
。
根据引理
,这个等式的左边实际上等于
。于是
。
在两边同时在左边乘
可得
,
与
不全为
矛盾。
综上,原数列方程的通解为
。
定义
(多项式):设
为一个常矢,且它在第
维上的分量不为
,则函数
称为关于
的
次多项式,
称为该多项式的系数。
定义
(多项式的重根):设
为一个关于
的
次多项式,
为一个复数,则使得
的最大自然数
称为
作为该多项式的根的重数。重数不为
的复数称为该多项式的根。
引理
(代数学基本定理):多项式的根的数量(重根按重数计算)与该多项式的次数相同。
证明略。
定义
(二项式系数):
。
引理
:若
为以
为系数的多项式的
重根,则对于任意的自然数
有
。
简略的证明:先套用定义
和定义
,再利用引理
和引理
可证。
引理
(Vandermonde恒等式):
。
证明略。
引理
:
。
证明:
(定义
)
(引理
)
(定义
)
(引理
)
(定义
)
。
引理
:若
为以
为系数的多项式的
重根,则对于任意的自然数
,数列
为关于
的数列方程
的特解。
证明:因为
,
所以
(引理
)
(引理
),
所以
。
因此原数列方程的左边
(引理
)
(引理
)
。
由定义
可知,
为原数列方程的特解。
引理
:数列
为关于
的数列方程
的通解,其中
为以
为系数的多项式的所有不同的根,
为其对应的重数,
为任意常数。
简略的证明:由引理
,根
能带来
个特解,所有的根带来的所有的特解可以证明是线性无关的,且根据引理
总共有
个这样的特解,于是根据引理
可证。
引理
:数列
为数列方程
的特解的充分必要条件为其指数型生成函数为线性齐次常系数微分方程
的特解。
证明:先证充分性。假设
是数列
的指数型生成函数,即
(定义
),
则原微分方程的左边
(引理
)
(引理
)
。
因此
是数列
的指数型生成函数。由于它是零函数,由引理
可得对于任意的
有
。
以上几步均可逆,于是必要性也得证。
引理
的推论:若数列
为数列方程
的通解,则
为线性齐次常系数微分方程
的特解。
定义
(指数函数):数列
的指数型生成函数称为指数函数,即
。
引理
:若
为数列
的指数型生成函数,则
。
证明:
(定义
)
(引理
的注)
(引理
)
(定义
)。
引理
和引理
的推论:函数
为线性齐次常系数微分方程
的通解,其中
为以
为系数的多项式的所有不同的根,
为其对应的重数,
为任意常数。
最终由上面的引理,我们知道了求线性齐次常系数微分方程
的通解的方法,其中
在第
维上的分量不为
。实际上,只需要解出以
为系数的多项式的所有的根,再套用引理
和引理
的推论即可得原微分方程的通解。
这种方法与《高等数学》上介绍的方法是完全一样的,不过推导的过程不一样。我这种推导,虽然复杂得多,但是非常有趣,因为它涉及到了很多代数学中的知识。
(我没有用求和符号!我好棒!
全篇都是拿矢量的数量积当求和用,太爽了。其实在研究线性问题的时候矢量是个很好用的东西。而且我这种矢量记法确实看上去清楚很多。)
(向大佬求助,引理
的充分性怎么证明啊!)