常系数齐次线性微分方程

先讨论二阶常系数齐次线性微分方程的解法,再把二阶方程的解法推广到n阶方程。

在二阶齐次线性微分方程
y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 (1) y''+P(x)y'+Q(x)y=0 \tag{1} y+P(x)y+Q(x)y=0(1)
中,如果 y ′ , y y',y y,y的系数 P ( x ) P(x) P(x) Q ( x ) Q(x) Q(x)均为常数,即(1)式成为
y ′ ′ + p y ′ + q y = 0 (2) y''+py'+qy=0 \tag{2} y+py+qy=0(2)
其中p,q是常数,那么称(2)为二阶常系数齐次线性微分方程。如果p,q不全为常数,称(1)为二阶变系数齐次线性微分方程。

由之前讨论可知,要找微分方程(2)的通解,可以先求出它的两个解 y 1 , y 2 y_1,y_2 y1,y2,如果它们之比不为常数,即 y 1 y_1 y1 y 2 y_2 y2线性无关,那么 y = C 1 y 1 + C 2 y 2 y=C_1y_1+C_2y_2 y=C1y1+C2y2就是方程(2)的通解。

当r为常数时,指数函数 y = e r x y=e^{rx} y=erx和它的各阶导数都只相差一个常熟因子。由于指数函数有这个特点,因此用 y = e r x y=e^{rx} y=erx来尝试,看能否选取适当的常数r,使 y = e r x y=e^{rx} y=erx满足方程(2)

y = e r x y=e^{rx} y=erx求导,得到
y ′ = r e r x , y ′ ′ = r 2 e r x y'=re^{rx},\quad y''=r^2e^{rx} y=rerx,y=r2erx
y , y ′ y,y' y,y y ′ ′ y'' y代入方程(2),得
( r 2 + p r + q ) e r x = 0 (r^2+pr+q)e^{rx}=0 (r2+pr+q)erx=0
由于 e r x ≠ 0 e^{rx}\neq 0 erx=0,所以
r 2 + p r + 1 = 0 (3) r^2+pr+1=0 \tag{3} r2+pr+1=0(3)
由此可见,只要r满足代数方程(3),函数 r = e r x r=e^{rx} r=erx就是微分方程(2)的解,我们把代数方程(3)叫做微分方程(2)的特征方程。

特征方程(3)是一个二次代数方程,其中 r 2 , r r^2,r r2,r的系数及常数项恰好依次是微分方程(2)中 y ′ ′ , y ′ y'',y' y,y y y y的系数。

特征方程(3)的两个根 r 1 , r 2 r_1,r_2 r1,r2可以用公式
r 1 , 2 = − p ± p 2 − 4 q 2 r_{1,2}=\frac{-p\pm \sqrt{p^2-4q}}{2} r1,2=2p±p24q
求出。它们有三种不同的情形:

(i)当 P 2 − 4 q > 0 P^2-4q>0 P24q>0时, r 1 , r 2 r_1,r_2 r1,r2是两个不相等的实根
r 1 = − p + p 2 − 4 q 2 , r 2 = − p − p 2 − 4 q 2 r_1=\frac{-p+\sqrt{p^2-4q}}{2},\quad r_2=\frac{-p-\sqrt{p^2-4q}}{2} r1=2p+p24q ,r2=2pp24q
(ii)当 p 2 − 4 q = 0 p^2-4q=0 p24q=0时, r 1 , r 2 r_1,r_2 r1,r2是两个相等的实根
r 1 = r 2 = − p 2 r_1=r_2=-\frac{p}{2} r1=r2=2p
(iii)当 p 2 − 4 q < 0 p^2-4q<0 p24q<0时, r 1 , r 2 r_1,r_2 r1,r2是一对共轭复根
r 1 = α + β i , r 2 = α − β i r_1=\alpha+\beta i,\quad r_2=\alpha-\beta i r1=α+βi,r2=αβi
其中
α = − p 2 , β = 4 q − p 2 2 \alpha=-\frac{p}{2},\quad \beta=\frac{\sqrt{4q-p^2}}{2} α=2p,β=24qp2
相应地,微分方程(2)的通解也有三种不同的情形。分别讨论如下:

(i)特征方程有两个不相等的实根: r 1 ≠ r 2 r_1\neq r_2 r1=r2

由上面讨论知道, y 1 = e r 1 x , y 2 = e r 2 x y_1=e^{r_1x},y_2=e^{r_2x} y1=er1x,y2=er2x是微分方程(2)的两个解,并且 y 2 y 1 = e r 2 x e r 1 x = e ( r 2 − r 1 ) x \frac{y_2}{y_1}=\frac{e^{r_2x}}{e^{r_1x}}=e^{(r_2-r_1)x} y1y2=er1xer2x=e(r2r1)x不是常数,因此微分方程(2)的通解为
y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x
(ii)特征方程有两个相等的实根: r 1 = r 2 r_1=r_2 r1=r2

这时,只得到微分方程(2)的一个解
y 1 = e r 1 x y_1=e^{r_1x} y1=er1x
为了得出微分方程(2)的通解,还需求出另一个解 y 2 y_2 y2,并且要求 y 2 y 1 \frac{y_2}{y_1} y1y2不是常数。设 y 2 y 1 = u ( x ) \frac{y_2}{y_1}=u(x) y1y2=u(x),即 y 2 = e r 1 x u ( x ) y_2=e^{r_1x}u(x) y2=er1xu(x)。下面来求 u ( x ) u(x) u(x)。将 y 2 y_2 y2求导,得
y 2 ′ = e r 1 x ( u ′ + r 1 u ) y 2 ′ ′ = e r 1 x ( u ′ ′ + 2 r 1 u ′ + r 1 2 u ) y_2'=e^{r_1x}(u'+r_1u) \\ y_2''=e^{r_1x}(u''+2r_1u'+r_1^2u) y2=er1x(u+r1u)y2=er1x(u+2r1u+r12u)
y 2 , y 2 ′ y_2,y_2' y2,y2 y 2 ′ ′ y_2'' y2代入微分方程(2),得
e r 1 x [ ( u ′ ′ + 2 r 1 u ′ + r 1 2 u ) + p ( u ′ + r 1 u ) + q u ] = 0 e^{r_1x}[(u''+2r_1u'+r_1^2u)+p(u'+r_1u)+qu]=0 er1x[(u+2r1u+r12u)+p(u+r1u)+qu]=0
约去 e r 1 x e^{r_1x} er1x,并合并同类项,得
u ′ ′ + ( 2 r 1 + p ) u ′ + ( r 1 2 + p r 1 + q ) u = 0 u''+(2r_1+p)u'+(r_1^2+pr_1+q)u=0 u+(2r1+p)u+(r12+pr1+q)u=0
由于 r 1 r_1 r1是特征方程(3)的二重根。因此 r 1 2 + p r 1 + q = 0 r_1^2+pr_1+q=0 r12+pr1+q=0,且 2 r 1 + p = 0 2r_1+p=0 2r1+p=0,于是得
u ′ ′ = 0 u''=0 u=0
因为这里只要得到一个不为常数的解,所以不妨选取u=x,由此得到微分方程(2)的另一个解
y 2 = x e r 1 x y_2=xe^{r_1x} y2=xer1x
从而微分方程(2)的通解为
y = C 1 e r 1 x + C 2 x e r 1 x y=C_1e^{r_1x}+C_2xe^{r_1x} y=C1er1x+C2xer1x

y = ( C 1 + C 2 x ) e r 1 x y=(C_1+C_2x)e^{r_1x} y=(C1+C2x)er1x
(iii)特征方程有一对共轭复根: r 1 = α + β i , r 2 = α − β i ( β ≠ 0 ) r_1=\alpha+\beta i,r_2=\alpha-\beta i(\beta \neq 0) r1=α+βi,r2=αβi(β=0)

这时, y 1 = e ( α + β i ) x , y 2 = e ( α − β i ) x y_1=e^{(\alpha+\beta i)x},y_2=e^{(\alpha-\beta i)x} y1=e(α+βi)x,y2=e(αβi)x是微分方程(2)的两个解,但它们是复值函数形式。为了得出实值函数形式的解,先利用欧拉公式 e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ y 1 , y 2 y_1,y_2 y1,y2改写为
y 1 = e ( α + β i ) x = e a x ⋅ e β x i = e a x ( c o s β x + i s i n β x ) y 2 = e ( α − β i ) x = e a x ⋅ e − β x i = e a x ( c o s β x − i s i n β x ) y_1=e^{(\alpha+\beta i)x}=e^{ax}·e^{\beta xi}=e^{ax}(cos\beta x+isin\beta x) \\ y_2=e^{(\alpha-\beta i)x}=e^{ax}·e^{-\beta xi}=e^{ax}(cos\beta x-isin\beta x) y1=e(α+βi)x=eaxeβxi=eax(cosβx+isinβx)y2=e(αβi)x=eaxeβxi=eax(cosβxisinβx)
由于复值函数 y 1 y_1 y1 y 2 y_2 y2之间成共轭关系,因此,取它们的和除以2就得到它们的实部,取它们的差除以2i就得到它们的虚部。由于方程(2)的解复合叠加原理,所以实值函数
y ^ 1 = 1 2 ( y 1 + y 2 ) = e a x c o s β x , y ^ 2 = 1 2 i ( y 1 − y 2 ) = e a x s i n β x \hat y_1=\frac{1}{2}(y_1+y_2)=e^{ax}cos\beta x ,\\ \hat y_2=\frac{1}{2i}(y_1-y_2)=e^{ax}sin\beta x y^1=21(y1+y2)=eaxcosβx,y^2=2i1(y1y2)=eaxsinβx
还是微分方程(2)的解,且 y ^ 1 y ^ 2 = e a x c o s β x e a x s i n β x = c o t   β x \frac{\hat y_1}{\hat y_2}=\frac{e^{ax}cos\beta x}{e^{ax}sin\beta x}=cot \,\beta x y^2y^1=eaxsinβxeaxcosβx=cotβx不是常数,所以微分方程(2)的通解为
y = e a x ( C 1 c o s β x + C 2 s i n β x ) y=e^{ax}(C_1cos\beta x+C_2sin\beta x) y=eax(C1cosβx+C2sinβx)
综上所述,求二阶常系数齐次线性微分方程
y ′ ′ + p y ′ + q y = 0 y''+py'+qy =0 y+py+qy=0
的通解的步骤如下:

第一步:写出微分方程(2)的特征方程
r 2 + p r + q = 0 (3) r^2+pr+q=0 \tag{3} r2+pr+q=0(3)
第二步:求出特征方程(3)的两个根 r 1 , r 2 r_1,r_2 r1,r2

第三步:根据特征方程(3)的两个根的不同情形,按照下列表格写出微分方程(2)的通解:
在这里插入图片描述

  • 6
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值