【统计学习方法学习笔记】-task03第三章k近邻法

3.1 k k k近邻算法

k k k近邻法(k-nearest neighbor,k-NN):基本的分类和回归方法。这里只讨论分类问题。对新的实例,根据其 k k k个最近邻的训练实例的类别,通过多数表决等方式进行预测。故不具备显示的学习过程。利用训练数据集对特征空间进行划分,并作为分类的“模型”。
k k k近邻法三要素: k k k值的选择、距离度量、分类规则。
算法3.1( k k k近邻法)

【输入】:训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),\dotsb,(x_N,y_N)\} T={(x1,y1),(x2,y2),,(xN,yN)}
其中, x i ∈ X ⊆ R n x_i \isin{\mathcal{X}} \sube{{\bf R}^n} xiXRn为实例的特征向量, y i ∈ Y = { c 1 , c 2 , ⋯   , c k } y_i \in{\mathcal{Y}}=\{c_1,c_2,\dotsb,c_k\} yiY={c1,c2,,ck}为实例的类别, i = 1 , 2 , ⋯   , N i=1,2,\dotsb,N i=1,2,,N;实例特征向量 x x x
【输出】:实例 x x x所属的类 y y y
(1)根据给定的距离度量,在训练集 T T T 中找出与 x x x 最邻近的 k k k 个点,涵盖这 k k k 个点的 x x x 的领域记作 N k ( x ) N_k(x) Nk(x)
(2)在 N k ( x ) N_k(x) Nk(x) 中根据分类决策规则(如多数表决)决定 x x x 的类别 y y y
y = arg ⁡ max ⁡ c j ∑ x i ∈ N k ( x ) I ( y i = c j ) , i = 1 , 2 , ⋯   , N ; j = 1 , 2 , ⋯   , K (3.1) y=\arg\underset{c_j}{\max}\sum_{x_i\in{N_k(x)}}{I(y_i=c_j)},i=1,2,\dotsb,N;j=1,2,\dotsb,K \tag{3.1} y=argcjmaxxiNk(x)I(yi=cj)i=1,2,,Nj=1,2,,K(3.1)

式(3.1)中, I I I为指示函数,即当 y i = c i y_i=c_i yi=ci I I I为1,否则为0.
ps: k = 1 k=1 k=1时为特殊情况,称为 最近邻算法 ,对于输入的实例点 x x x,训练数据集中与它最邻近点的类别作为 x x x的类。

3.2 k k k近邻模型

k k k近邻法模型对应于对特征空间的划分。当其三要素确定,就是对特征空间进行了划分,确定子空间里的每个点所属的类。

3.2.1 模型

在这里插入图片描述

3.2.2 距离度量

L p ( x i , y j ) = ( ∑ l = 1 n ∣ x i ( l ) − y j ( l ) ∣ p ) 1 p , p ≥ 1 L_p(x_i,y_j)={\Biggl(\sum_{l=1}^{n}|x_{i}^{(l)}-y_{j}^{(l)}|^p\Biggr)}^{1\over p} ,p\ge1 Lp(xi,yj)=(l=1nxi(l)yj(l)p)p1p1
p = 1 p=1 p=1时,为曼哈顿距离(Manhattan distance)
p = 2 p=2 p=2时,为欧氏距离(Euclidean distance)
p = ∞ p= \infty p=时,为切比雪夫距离,各个坐标距离的最大值

3.2.3 k k k值的选择

k k k越小,近似误差减小,估计误差增大,整体模型的复杂度提升,容易过拟合。
k k k越大,近似误差增大,估计误差减小,整体模型的复制度降低,模型简单,但预测错误增大。
k = N k=N k=N时,任何输入,都将简单地预测其分类,模型过于简单,忽略了训练实例钟的大量有用信息,不可取。
一般 k k k较小,常采用交叉验证法来选取最优 k k k值。
在这里插入图片描述

3.2.4 分类决策规则

常采用多数表决规则。
若分类的损失函数为0-1损失函数,分类函数为: f : R n → { c 1 , c 2 , ⋯   , c k } f:{\bf R}^n\to \{c_1,c_2,\dotsb,c_k\} f:Rn{c1,c2,,ck}那么误分类的概率是: P ( Y ≠ f ( X ) ) = 1 − P ( Y = f ( X ) ) P(Y\ne f(X))=1-P(Y=f(X)) P(Y=f(X))=1P(Y=f(X))对给定的实例 x ∈ X x\in \mathcal X xX,其最近邻的 k k k个训练实例点构成集合 N k ( x ) N_k(x) Nk(x)。如果涵盖 N k ( x ) N_k(x) Nk(x)的区域的类别是 c j c_j cj,那么误分类率是: 1 k ∑ x i ∈ N k ( x ) I ( y i ≠ c j ) = 1 − 1 k ∑ x i ∈ N k ( x ) I ( y i = c j ) {1\over k}\sum_{x_i\in N_k(x)}I(y_i\ne c_j)=1-{1\over k}\sum_{xi\in N_{k}(x)}I(y_i=c_j) k1xiNk(x)I(yi=cj)=1k1xiNk(x)I(yi=cj)
要使误分类率最小,即经验风险最小,就要使 ∑ x i ∈ N k ( x ) I ( y i = c j ) \sum_{x_i\in N_{k}(x)}I(y_i=c_j) xiNk(x)I(yi=cj)最大,所以多数表决规则等价于经验风险最小化。

3.3 k k k近邻法的实现: k d kd kd

实现 k k k近邻法时,要考虑如何对训练数据进行快速 k k k近邻搜索,这点再特征空间的维数大及训练数据容量大时尤其必要。
k k k近邻法最简单的实现方法时线性扫描(linear scan)。这时要计算输入实例与每一个训练实例的距离。当训练集很大时,计算非常耗时,这种方法是不可行的。
为了提高 k k k近邻搜索的效率,可以考虑使用特殊的结构存储训练数据,以减少计算距离的次数。具体方法很多,这里主要介绍 k d kd kd树(kd tree) 方法。

3.3.1 构造 k d kd kd

根节点对应于 k k k维空间中包含所有实例点的超矩形区域,再通过递归,在超矩形区域(结点)上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点且垂直于选定的坐标轴;这时实例被分到两个子区域,分别为树的新结点。重复这个过程直到子区域内没有实例时终止(终止时的结点为叶子结点)。
当切分点时实例点的中位数时,得到的 k d kd kd树是平衡的,平衡的 k d kd kd树搜索时效率未必最优。
算法3.2(构造平衡 k d kd kd树)

【输入】: k k k维空间数据集 T = { x 1 , x 2 , ⋯   , x N } T=\{x_1,x_2,\dotsb,x_N\} T={x1,x2,,xN},其中 x i = ( x i 1 , x i 2 , ⋯   , x i k ) T , i = 1 , 2 , ⋯   , N x_i=(x_{i}^{1},x_{i}^{2},\dotsb,x_{i}^{k})^T,i=1,2,\dotsb,N xi=(xi1,xi2,,xik)Ti=1,2,,N
【输出】: k d kd kd树。
(1)开始:构造根结点,根结点对应于包含 T T T k k k维空间的超矩形区域。
选择 x 1 x^{1} x1为坐标轴,以 T T T中所有实例的 x 1 x^{1} x1坐标的中位数为切分点,将根结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴 x ( 1 ) x^(1) x(1)垂直的超平面实现。
由根结点生成深度为1的左、右子结点:左子结点对应坐标 x ( 1 ) x^(1) x(1)小于切分点的子区域,右子结点对应于坐标 x ( 1 ) x^(1) x(1)大于切分点的子区域。
将落在切分超平面上的实例点保存在根结点。
(2)重复:对深度为 j j j的结点,选择 x ( l ) x^{(l)} x(l)为切分的坐标轴, l = j ( m o d    k ) + 1 l=j(\mod k)+1 l=j(modk)+1,以该结点的区域中所有实例的 x ( l ) x^{(l)} x(l)坐标的中位数为切分点,将该结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴 x ( l ) x^{(l)} x(l)垂直的超平面实现。
由该结点生成深度为 j + 1 j+1 j+1的左、右子结点:左子结点对应坐标 x ( l ) x^{(l)} x(l)小于切分点的子区域,右子结点对应坐标 x ( l ) x^{(l)} x(l)大于切分点的子区域。
将落在切分超平面上的实例点保存在该结点。
(3)直到两个子区域没有实例存在时停止。从而形成 k d kd kd树的区域划分。

3.3.2 搜索 k d kd kd

如何利用 k d kd kd树进行 k k k近邻搜索。在局部区域搜索,以提高效率。在这里插入图片描述
算法3.3(用 k d kd kd树的最近邻搜索)

【输入】:已构造的 k d kd kd树;目标点 x x x;
【输出】: x x x的最近邻。
(1)在 k d kd kd树中找出包含目标点 x x x的叶结点:从根结点出发,递归地向下访问 k d kd kd树。若目标点 x x x当前维的坐标小于切分点的坐标,则移动到左子节点,否则移动到右子节点。直到子结点为叶子结点为止。
(2)以此叶结点为“当前最近点”。
(3)递归地向上回退,在每个结点进行以下操作:
(a)如果该结点保存的实例点比当前最近点距离目标点更近,则以该实例点为“当前最近点”。
(b)当前最近点一定存在于该结点一个子结点对应的区域。检查该子结点的父结点的另一子结点对应的区域是否有更近的点。具体地,检查另一子结点对应的区域是否与以目标结点为球心、以目标点与“当前最近点”间的距离为半径的超球体相交。
如果相交,可能在另一个子结点对应的区域内存在距目标点更近的点,移动到另一个子结点,接着,递归地进行最近邻搜索;
如果不相交,向上回退。
(4)当回退到根结点时,搜索结束。最后的“当前最近点”即为 x x x的最近邻点。

若实例点时随机分布的, k d kd kd树搜索的平均计算复杂度时 O ( log ⁡ N ) O(\log N) O(logN),其中 N N N是训练实例数。
k d kd kd树适合训练实例数远大于空间维度数时的 k k k近邻搜索。当空间维数接近训练实例数时,它的效率会迅速下降,几乎接近线性扫描。

习题

3.2

解: x x x的最近邻点是 ( 2 , 3 ) T (2,3)^T (2,3)T

3.3

解:算法3.3是最近邻算法, k k k近邻算法,需要再加一个容量为 k k k的队列,存储目标点 x x x k k k个邻近的点,并每次跟新队列。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值