集成学习 Task05 Bagging


前言

请添加图片描述


一、投票法

1.投票法的思路

投票法是集成学习中常用的技巧,可以帮助我们提高模型的泛化能力,减少模型的错误率。一般情况下,错误总是发生在局部,因此融合多个数据是降低误差的一个好方法,这就是投票法的基本思路。

对于回归模型来说,投票法最终的预测结果是多个其他回归模型预测结果的平均值。
对于分类模型,硬投票法的预测结果是多个模型预测结果中出现次数最多的类别,软投票对各类预测结果的概率进行求和,最终选取概率之和最大的类标签。

2.投票法的原理

投票法是一种遵循少数服从多数的集成学习,通过多个模型的集成降低方差,从而提高模型的鲁棒性。在理想情况下,投票法的预测效果应当优于任何一个基模型的预测效果。

投票法在回归模型与分类模型上均可使用:

  • 回归投票法:预测结果是所有模型预测结果的平均值。
  • 分类投票法:预测结果是所有模型种出现最多的预测结果

分类投票法又可以被划分为硬投票与软投票:

  • 硬投票:预测结果是所有投票结果最多出现的类。
  • 软投票:预测结果是所有投票结果中概率加和最大的类。

考虑不同的基模型可能产生的影响,理论上,基模型可以是任何已被训练好的模型。但在实际应用上,想要投票法产生较好的结果,需要满足两个条件:

  • 基模型之间的效果不能差别过大。当某个基模型相对于其他基模型效果过差时,该模型很可能成为噪声。
  • 基模型之间应该有较小的同质性。例如在基模型预测效果近似的情况下,基于树模型与线性模型的投票,往往优于两个树模型或两个线性模型。?

当投票合集中使用的模型能预测出清晰的类别标签时,适合使用硬投票。当投票集合中使用的模型能预测类别的概率时,适合使用软投票。
软投票同样可以用于那些本身并不预测类成员概率的模型,只要他们可以输出类似于概率的预测分数值(例如支持向量机、k-最近邻和决策树)。

局限性:它对所有模型的处理是一样的,这意味着所有模型对预测的贡献是一样的。如果一些模型在某些情况下很好,而在其他情况下很差,这是使用投票法时需要考虑到的一个问题。

3.投票法的案例分析(基于sklearn,介绍pipe管道的使用以及voting的使用)

Sklearn中提供了 VotingRegressor 与 VotingClassifier 两个投票方法。  这两种模型的操作方式相同,并采用相同的参数。使用模型需要提供一个模型列表,列表中每个模型采用Tuple的结构表示,第一个元素代表名称,第二个元素代表模型,需要保证每个模型必须拥有唯一的名称。

定义模型:

models = [('lr',LogisticRegression()),('svm',SVC())]
ensemble = VotingClassifier(estimators=models)

预处理:

models = [('lr',LogisticRegression()),('svm',make_pipeline(StandardScaler(),SVC()))]
ensemble = VotingClassifier(estimators=models)

模型还提供了voting参数让我们选择软投票或者硬投票:

models = [('lr',LogisticRegression()),('svm',SVC())]
ensemble = VotingClassifier(estimators=models, voting='soft')

举例:

# test classification dataset
from sklearn.datasets import make_classification
# define dataset
def get_dataset():
    X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5, random_state=2)
    # summarize the dataset
    return X,y
  
# get a voting ensemble of models
def get_voting():
    # define the base models
    models = list()
    models.append(('knn1', KNeighborsClassifier(n_neighbors=1)))
    models.append(('knn3', KNeighborsClassifier(n_neighbors=3)))
    models.append(('knn5', KNeighborsClassifier(n_neighbors=5)))
    models.append(('knn7', KNeighborsClassifier(n_neighbors=7)))
    models.append(('knn9', KNeighborsClassifier(n_neighbors=9)))
    # define the voting ensemble
    ensemble = VotingClassifier(estimators=models, voting='hard')
    return ensemble

# get a list of models to evaluate
def get_models():
    models = dict()
    models['knn1'] = KNeighborsClassifier(n_neighbors=1)
    models['knn3'] = KNeighborsClassifier(n_neighbors=3)
    models['knn5'] = KNeighborsClassifier(n_neighbors=5)
    models['knn7'] = KNeighborsClassifier(n_neighbors=7)
    models['knn9'] = KNeighborsClassifier(n_neighbors=9)
    models['hard_voting'] = get_voting()
    return models

#下面的evaluate_model()函数接收一个模型实例,并以分层10倍交叉验证三次重复的分数列表的形式返回。
# evaluate a give model using cross-validation
from sklearn.model_selection import cross_val_score   #Added by ljq
def evaluate_model(model, X, y):
    cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
    scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1, error_score='raise')
    return scores

from sklearn.neighbors import KNeighborsClassifier
from matplotlib import pyplot

# define dataset
X, y = get_dataset()
# get the models to evaluate
models = get_models()
# evaluate the models and store results
results, names = list(), list()
for name, model in models.items():
    scores = evaluate_model(model, X, y)
    results.append(scores)
    names.append(name)
    print('>%s %.3f (%.3f)' % (name, mean(scores), std(scores)))
# plot model performance for comparison
pyplot.boxplot(results, labels=names, showmeans=True)
pyplot.show()

我们得到的结果如下:
knn1 0.873 (0.030)
knn3 0.889 (0.038)
knn5 0.895 (0.031)
knn7 0.899 (0.035)
knn9 0.900 (0.033)
hard_voting 0.902 (0.034)
显然投票的效果略大于任何一个基模型。


三、bagging

1. bagging的思路

与投票法不同的是,Bagging不仅仅集成模型最后的预测结果,同时采用一定策略来影响基模型训练,保证基模型可以服从一定的假设。在上一章中我们提到,希望各个模型之间具有较大的差异性,而在实际操作中的模型却往往是同质的,因此一个简单的思路是通过不同的采样增加模型的差异性。

什么是Baggings?
什么是自助采样(bootstrap)?
bootstrap和bagging的关系

2.bagging的原理分析

自助采样(bootstrap),即有放回的从数据集中进行采样,也就是说,同样的一个样本可能被多次进行采样。
在这里插入图片描述

首先我们随机取出一个样本放入采样集合中,再把这个样本放回初始数据集,重复K次采样,最终我们可以获得一个大小为K的样本集合。同样的方法, 我们可以采样出T个含K个样本的采样集合,然后基于每个采样集合训练出一个基学习器,再将这些基学习器进行结合,这就是Bagging的基本流程。
  回归问题:通过预测取平均值来进行的。
  分类问题:通过对预测取多数票预测来进行的。
  Bagging方法之所以有效,是因为每个模型都是在略微不同的训练数据集上拟合完成的,这又使得每个基模型之间存在略微的差异,使每个基模型拥有略微不同的训练能力。
  Bagging同样是一种降低方差的技术,因此它在不剪枝决策树、神经网络等易受样本扰动的学习器上效果更加明显。在实际的使用中,加入列采样的Bagging技术对高维小样本往往有神奇的效果。–>以牺牲bias为代价降低方差

3. bagging的案例分析(基于sklearn,介绍随机森林的相关理论以及实例)

Sklearn为我们提供了 BaggingRegressor 与 BaggingClassifier 两种Bagging方法的API。

基于决策树方法的bagging策略,对比回归模型。

Bagging的一个典型应用是随机森林。顾名思义,“森林”是由许多“树”bagging组成的。在具体实现上,用于每个决策树训练的样本和构建决策树的特征都是通过随机采样得到的,随机森林的预测结果是多个决策树输出的组合(投票)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
自动控制节水灌溉技术的高低代表着农业现代化的发展状况,灌溉系统自动化水平较低是制约我国高效农业发展的主要原因。本文就此问题研究了单片机控制的滴灌节水灌溉系统,该系统可对不同土壤的湿度进行监控,并按照作物对土壤湿度的要求进行适时、适量灌水,其核心是单片机和PC机构成的控制部分,主要对土壤湿度与灌水量之间的关系、灌溉控制技术及设备系统的硬件、软件编程各个部分进行了深入的研究。 单片机控制部分采用上下位机的形式。下位机硬件部分选用AT89C51单片机为核心,主要由土壤湿度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成,软件选用汇编语言编程。上位机选用586型以上PC机,通过MAX232芯片实现同下位机的电平转换功能,上下位机之间通过串行通信方式进行数据的双向传输,软件选用VB高级编程语言以建立友好的人机界面。系统主要具有以下功能:可在PC机提供的人机对话界面上设置作物要求的土壤湿度相关参数;单片机可将土壤湿度传感器检测到的土壤湿度模拟量转换成数字量,显示于LED显示器上,同时单片机可采用串行通信方式将此湿度值传输到PC机上;PC机通过其内设程序计算出所需的灌水量和灌水时间,且显示于界面上,并将有关的灌水信息反馈给单片机,若需灌水,则单片机系统启动鸣音报警,发出灌水信号,并经放大驱动设备,开启电磁阀进行倒计时定时灌水,若不需灌水,即PC机上显示的灌水量和灌水时间均为0,系统不进行灌水。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值